RTOS

ASSEMVMIBLER

UP-7599 Rev. 1

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIVAC® Systems developments. The infor-
mation presented herein may not reflect the current status of the product.
For the current status of the product, contact your local Univac Represent-
ative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of hardware or software changes and refinements. The Univac
Division reserves the right to make such additions, corrections, and/or
deletions as, in the judgment of the Univac Division, are required by the
development of its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

Other trademarks of Sperry Rand Corporation appearing in the text of this
publication are:

FASTRAND

© 1968, 1970 — SPERRY RAND CORPORATION PRINTED IN U.S.A,

UP-7599 Contents
Rev. 1 UNIVAC 418-1l1 RTOS ASSEMBLER SECTION: P AGE:
CONTENTS
CONTENTS 1to}h
1. THE UNIVAC 418.111 ASSEMBLER 1-1to 1-27
1.1, INTRODUCTION 1-1
1.2, SYMBOLIC CODING FORMAT 1-1
1.2.1. Assembler Character Set 1-2
1.3. DESCRIPTION OF FIELDS 1-2
1.3.1. Label Field 1-2
1.3.1.1. Simple Labels 1-3
1.3.1.2. Extemal Labels 1-3
1.3.1.3, Dimensioned (Subscripted) Labels 1-3
1.3.1.4. Location Counter Declaration 1-8
1.3.2. Operation Field 1-9
1.3.3. Operand Field 1-10
1.3.4. Comment Field 1-11
1.3.5. Line Continuation 1-11
1.3.6. Ejection of Paper 1-11
1.4, EXPRESSIONS 1-12
.41, Elementary ltems 1-12
L.4.1.1. Symbolic Label 1-12
1.4.1.2. Location Counter 1-13
1.4,1.3. Octal Numbers 1-13
1.4,1.3.1. Double-Precision Octal Numbers 1-13
1.4.1.4, Decimal Numbers 1-14
1.4.1.4,1, Double-Precision Decimal Numbers 1-14
1.4.1.5. Alpha Constants 1-14
1.4.1.5.1. Double-Precision Alpha Constants 1-15
1.4.1.6. Floating-Point Numbers 1-16
1.4.1.7. Parameter Reference Form 1-16
1.4.1.8. Line Items (Literats) 1-17
1.4.2. Operators 1-17
1.4.2.1. Shift Exponent (*/) 1-19
1.4.2.2, Arithmetic Product (*) 1-19
1.4.2.3, Arithmetic Quotient (/) 1-20
1.4.2.4, Covered Quotient (//) 1-20
1.4.2.5, Arithmetic Sum (+) 1-20
1.4,2.6. Arithmetic Difference (=) 1-21
1.4.2.7. Logical Product (*¥) 1-21
1.4.2.8. Logical Sum (++) 1-21
1.4.2.9. Logical Difference (==) 1-21
1.4.2,10, Equal (=) 1-22
1.4.2,11. Greater Than (>) 1-22
1.4.2,12. Less Than (<) 1-22
1.4.3, Interbay Offset Operator (1) 1-23
1.4.4, Expression Modes 1-24
1.5, DATA WORD GENERATION 1-25
1.5,1, Data Word Expressions 1-26
1.5.2. Alpha Strings 1-26
1.5.3. Double-Precision Floating-Point Numbers 1-27
1.6, DOUBLE-PRECISION EXPRESSIONS 1-27

UP-7599

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER _Contents rces
2. ASSEMBLER DIRECTIVES 2-1to 2-15
2.1. GENERAL 2-1
2.2, EQU DIRECTIVE 2-1
2.3. RES DIRECTIVE 2-3
2.4, FORM DIRECTIVE 2-4
2.5, ODD DIRECTIVE 2-5
2.6. EVEN DIRECTIVE 2-6
2.7. CHAR DIRECTIVE 2-6
2.7.1. XCHAR Directive 2~1
2.8. INSERT DIRECTIVE 2-7
2.9. UNLIST DIRECTIVE 2-7
2,10, LIST DIRECTIVE 2-7
2.11. SKIP DIRECTIVE 2-7
2.12, END DIRECTIVE 2-8
2.13. GO DIRECTIVE 2-8
2,14, NAME DIRECTIVE 2-8
2.15. DO DIRECTIVE 2-9
2.15.1. Conditional DO 2-10
2.15.2, Nesting of DO Directives 2-10
2.16. LIT DIRECTIVE 2-11
2.17. INFO DIRECTIVE 2-13
2.18, ASM DIRECTIVE 2-15
. PROCEDURES 3-1to 3-31
3.1. GENERAL 3-1
3.2, PROCEDURE MODES 3-1
3.2.1. Simple Mode 3=1
3.2.2. Generative Mode 3=2
3.2.3. Interpretive Mode 3=2
3.3, PROCEDURE SAMPLE 3-2
3.4, PROC DIRECTIVE 3-2
3.5, END DIRECTIVE 3-3
3.6. PROCEDURE REFERENCE 3-4
3.6.1. Definition of a Procedure Call Line 3-4
3.6.2. The Operand Field of a Call Line 3-5

Ulf;fglg UNIVAC 418-111l RTOS ASSEMBLER ,Contents | e ace:
3.7. PARAFORMS 3-6
3.7.1. Referencing the Number of Fields 3-6
3.7.2, Referencing the Number of Subfields 3=~7
3.7.3. Referencing the Procedure Call Parameters 3-8
3.7.4, Referencing the Asterisk in a Procedure Parameter 3-9
3.7.5. Referencing the NAME Directive Operand Value 3-10
3.7.6. Referencing Subfields of the Oth Field 3-12
3.7.7. Summary of Paraforms 3-13
3.8, NESTING OF PROCEDURES 3-13
3.8.1. Physical Nesting 3-14
3.8.2. Levels of Procedures 3-15
3.9. PROCEDURE LABELS 3-17
3.9.1. Global Labels 3-19
3.10, FORWARD REFERENCES 3-20
3.11. LOCATION COUNTER DEFINITION 3-21
3.11.1. Writing Labels 3-22
3.12. COMPLEX PROCEDURES 3-22
3.12.1. NAME Directive 3-22
3.12.1.1. Local Reference Point 3-23
3.12.1.2. Altemate Entry Point 3-23
3.12.1.3, Parameter Value 3-24
3.12.2. GO Directive 3~-25
3.12.3. Do Directive 3=27
3.12.3.1, Conditional bo 3-28
3.12.3.2, Generative DO 3~28

. ASSEMBLER OPERATION 4-1 to 4-18
4.1. GENERAL 4~1
4,2, CONTROL CARD FORMAT 4-1
4.3, ASSEMBLER QUTPUT LISTING 4-2
4,3.1. Mode Listing 4-3
4.3.2, Cross-Reference Listing 4-5
4.4, SYMBOLIC CORRECTIONS 4-6
4.5, DIAGNOSTICS 4-7
4.5.1, Address Warning (A) 4-7
4.5.2, Format Waming (F) 4-8
4,5.3. Truncation Waming (T) 4-8
4.5.4, Level Error(L) 4-8
4,5,5. Instruction Error (1) 4-9
4,5.6. Relocation Error (R) 4-10
4,5.7. External or Undefined Waming (U) 4-10
4.5.8, Double Definition Warning (D) 4-10
4,5.9. Expression Errors (E) 4-11

UP-7599

Contents

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER SECTION, PAGE:
4,6, ERROR MESSAGES 4-13
4.6.1. Element Not Found 4-13
4,6.2. Procedure Not Found 4-13
4.6.3. END Card Omission 4-13
4.6.4, Drum Library Overflow 4-~13
4.6.5. Main Storage Overflow 4-13
4.6.6. Intemal Error 4-14
4.6.7. Element Deletion 4-14
4.6.8. Correction Errors 4-14
4.7, GENERATION PARAMETERS 4-15
4.8, ELEMENT AND PROCEDURE INSERTION 4-15
4.9. LABEL TABLE REFERENCES 4-15
4.9.1. Operand Field Hierarchy 4-16
4.9.2. Operation Field Hierarchy 4-16

. COMMAND/ARITHMETIC SECTION 5-1 to 5-9
5.1. GENERAL 5-1
5.2, HARDWARE CHARACTERISTICS 5-1
5.3. DESIGNATORS 5-1
5.4, INSTRUCTION TYPES AND FORMATS 5-3
5.5. ADDRESSING 5-4
9.6, STORAGE PROTECTION (GUARD MODE LIMITS) 5-7
5.7. PRIVILEGED INSTRUCTIONS 5-8
5.8, FLOATING-POINT NUMBERS 5-8
9.9. INTERRUPTS 5-8

. INSTRUCTION REPERTOIRE DESCRIPTION 6-1to 6-59
6.1. SYMBOL CONVENTIONS 6-1
6.2. INSTRUCTION REPERTOIRE 6-2
6.2.1. Supervisor Call Instructions 6-2
6.3, TYPES | AND Il INSTRUCTIONS 6-2
6.4, TYPE Il INSTRUCTIONS 6-37
6.4.1. Type lll-b Instuctions 6-37
6.4.2. Type lll-a Instructions 642

UP-7599
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER Contents
SECTION: PAGE:

APPENDIX A, INSTRUCTION REPERTOIRE SUMMARY A-1to A-7
FIGURES

5-1. Type | Instruction Addressing Techniques 5-6
TABLES

1-1. Assembler Character Set 1-2

1-2. Hiérarchy of Operators 1-18

1-3, Rules for Determining whether Results of Binary Operations are
Relocatable 1-25

UP-7599
Rev. 1

1

SECTION: PAGE:

UNIVAC 418-11l RTOS ASSEMBLER

1.1.

1.2.

. THE UNIVAC 4I18-Ilil
ASSEMBLER

INTRODUCTION

The UNIVAC 418-II Assembler is a symbolic coding language allowing simple,
brief expressions as well as complex expressions. The assembler provides rapid
translation from this symbolic language to machine-language relocatable object
coding for the UNIVAC 418-III System,

The assembler operates under control of the Real-Time Operating System (RTOS).
The output of the assembler is made consistent with the system by using standard
interfacing routines both for the source files and the relocatable program generated.

The assembly language includes a wide and sophisticated variety of operators which
allow the fabrication of desired fields based on information provided at assembly
time. The instruction function codes are assigned mnemonics which describe the
hardware function of each instruction, Assembler directive commands provide the
programmer with the ability to generate data words and values based on specific
conditions at assembly time. Multiple location counters provide a means of preparing
for program segmentation and controlling address generation during assembly of a
source code program.

The assembler produces a relocatable binary output for processing by the loading
mechanism of the system. If requested, it supplies a side-by-side listing of the
original symbolic coding and an edited octal representation of each word generated.
Flags indicate errors in the symbolic coding detected by the assembler.

SYMBOLIC CODING FORMAT

In writing instructions using the assembler language, the programmer is primarily
concerned with three fields: a label field, an operation field, and an operand field.
It is possible to relate the symbolic coding to its associated flowchart, if desired,
by appending comments to each instruction line or program element,

All of the fields and subfields following the label field in the assembler are in free
form providing the greatest convenience possible for the programmer. Consequently,
the programmer is not hampered by the necessity to consider fixed-form boundaries
in the design of symbolic coding.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER

SECTION:

PAGE:

1.2.1.

1.3.

1.3.1.

Assembler Character Set

The assembler uses the XS-3 character set as def
data is to be generated in a different code convention, t

in 2.7, may be used.

DESCRIPTION OF FIELDS

The programmer is primaril
opetrand field. The label field must start in co

80 COL. 80 COL.
CARD PRINTABLE XS-3 CARD PRINTABLE XS-3
CODE CHARACTERS CODE CODE CHARACTERS| CODE
12-1 A 01 0100 7 7 00 1010
12-2 B 01 0101 8 8 00 1011
12-3 c 01 0110 9 9 00 1100
12-4 D 01 0111 12 + 01 0000
12-5 E 01 1000 11 —(Minus) 00 0010
12-6 F 01 1001 12-0 ? 01 0011
12-7 G 01 1010 11-0 (Exclam.) 10 0011
12-8 H 01 1011 0-1 / 11 0100
12-9 | 01 1100 2-8 & 11 0011
11-1 J 10 0100 3-8 = 01 1101
11-2 K 10 0101 4-8 "(Apos.) 10 1110
11-3 L 10 0110 5-8 :(Colon) 01 0001
11-4 M 10 o111 6-8 > 11 1110
11-5 N 10 1000 7-8 @ 10 0000
11-6 0 10 1001 12-3-8 .(Period) 01 0010
117 P 10 1010 12-4-8) 11 1101
11-8 Q 10 1011 12-5-8 [00 1111
11-9 R 10 1100 12-6-8 < 01 1110
0-2 S 11 o101 12-7-8 # 01 1111
0-3 T 11 0110 11-3-8 $ 10 0010
0-4 U 11 oltl 11-4-8 * 10 0001
0-5 v 11 1000 11-5-8] 00 0001
0-6 w 11 1001 11-6-8 :(Semi-col) 00 1110
0-7 X 11 1010 11-7-8 A 10 1111
0-8 Y 11 1011 0-2-8 # 11 0000
0-9 z 11 1100 0-3-8 ,(Comma) 11 0010
0 0 00 0011 0-4-8 (11 0001
1 1 00 0100 0-5-8 % 10 1101
2 2 00 0101 0-6-8 N 00 1101
3 3 00 0110 0-7-8 x| 11 1111
4 4 00 0111
5 5 00 1000 BLANK Space N.P. 00 0000
6 6 00 1001
Table 1—=1. Assembler Character Set

y concerned with the label field, operation field, and
lumn 1. The fields following the label

field are freeform and may start in column 2 if there is no label field.

The label field is optional. When used, the label field must start in column 1. No
other field may start in column 1. The label field may contain a declaration of a

specific location counter, a label, or both. The label field is terminated by a blank.

Label Field

ined in Table 1—1. If alphanumeric
he CHAR directive, described

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

1.3.1.1.

Simple Labels

A label identifies a value or a line of symbolic coding, When a label is used,
the assembler assigns it a relative address which is the value of the current
controlling location counter. A relative address is not assigned to a label used
with assembler directives EQU, NAME, FORM, PROC, DO, LIT (see Section 2).

A label consists of one to six alphanumeric characters starting with an alphabetic

character in column T -

Special characters are nou allowed within a label. To ensure uniqueness, many
system labels use the § as part of the label. Using the § as part of a label should
be avoided to assure this uniqueness of system labels.

Labels defined in the aforementioned manner are referred to as simple labels and
are allowed on any statement. If a label is the only nonblank field on a statement,

the label is defined as identifying the next location counter value to be generated.

Example:

LABEL

OPERATION OPERAND COMMENTS
10 20 30 40 50

_L_LAJBIEILl ot .

niLanKlr|1|1|15|||||1[r:11x1;11111||11|11,111,|11,1,JL

_&‘ lzlsl,g_k‘ L4

{ l N SN N SO W SO W D l 1 S U A | I IS TR VSN G WO U SRS S | |..L-1 SR R S SR S | Ll | R B B |

LB[ciDl S S

I N T |
1|L||-|n|1JA|1!A1'|2n$|b|1|:|!1||x,111|1111|1x1111,__1,,1_“1,41,1

llllllllllillllll!lll]lilillII[}IlIII,L,L,,A,A‘L‘llI,L.L._J_l,,

External Labels

An externally defined label is one which may be accessed by other programs.
The loader will correlate the references between the external label references

in one program and the corresponding external label definitions in another. To
define an external label, an asterisk is appended to the label.

Example:

LABEL

OPERATION OPERAND COMMENTS
10 20 30 40 50

LABEL,

L

L LAK TR TR Lt 1 l'ilelCIAl,‘pJ lLlAlalE’Ll TR T O N 0 0 WO S S S RN Y

TJAIQ!lx Ll

LN S A - T I']EIXITIELRINLAILILIYi 10151F1I1N1E1°1 tLIAnBJ,ElLl..i

11111:1:|1111|1|111|11ni:1|||1||<1111,,,,1.‘_,,,1,|,11111|‘|;a

Dimensioned (Subscripted) Labels

A dimensioned or subscripted label is a label which is distinguished by its
subscripts rather than by the label itself. The label serves to identify a set of
related quantities. A subscript may be any legitimate assembler item, an
expression, or another subscripted label. In defining a subscripted label, all
symbols used in expressing any of its subscripts must have been previously
defined. If another dimensioned label is used as a subscript of the label being
defined, it must have been defined previously.’

UP-7599
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

The dimensioned label is identified by the format:

label(subl ,subg,... ,suby,)

The number of subscripts used in defining a dimensioned label is referred to as
its dimensionality. The maximum dimensionality of a subscripted label is un-
specified. The dimensionality of a subscripted label is constant, that is, once
a member of the set is defined, all other explicitly defined members must have
the same number of subscripts even though each subscript value may differ.

Example:
LABEL OPERATION OPERAND
10 20 30 40
,&(ls!)l .| L o4 i l*lsi F R N N U S ¢ L,‘ 1 1 L i L 1 1 i i l 1 1 1 FR S | i i I\ } I 1 L. i L.
Bl(q'ilL L)L SRR 7 - T O O S NN U U N YN SO S VY TS N S SOV U SN ST Y S SV IS S S
C(A(a)lllz)l 1+.7, L] I T U % U U T U TV U O S U G Y S I S
D.(CLS. &L@u@l&“m‘))1 N |) i"'lsl T S T N N0 (U O VOO N O TS VU S VA U SN TSN NN W SO S|
S S UV U VO U A U T U TN U N U N U U T S T S T SO RS R !

Explanation:
m Line 1 defines a one-dimensional label A(3). The subscript value is 3.
B Line 2 defines a two-dimensional label B(4,1) with subscript values 4 and 1.

m Line 3 defines a two-dimensional label C(A(3),2) with subscript values A(3)
and 2.

® Line 4 defines a two-dimensional label D(C(A(3),B(4,1)),1) with subscript
values C(A(3),B(4,1)) and 1.

Dimensioned labels may not be defined to be external to the program assembly.

If used within procedures (see Section 3), the dimensioned labels may be defined
as accessible at lower levels by appending the appropriate number of asterisks
immediately following the label and before the left parenthesis.

Dimensioned labels may be defined to have a value in magnitude of 236.1 or less.
If any item used in defining the value of the expression is a double-word item
(see 1.4), the label has a double-word value (see 2.2).

The value of a dimensioned label may be redefined in the course of the assembly
without resulting in a ‘D-flag’.

If reference is made to an undefined member of a defined set of dimensioned
labels, the value of the undefined item is assumed to be a defined zero. If no
member of the set is defined, the value is zero and an external reference is
made to the label.

UP-7599

Rev. 1 UNIVAC 418-I11l RTOS ASSEMBLER 1
SECTION: PAGE:
Example:
/o

oopoo!l
000002 00 000000 70 uuu?z 0o LLK Atl)

+ by
000003 000001 B(1) EQU ;(z’
000004 00 000001 70 o000 LLk

+ by12 00 Enp
000005

es® SUMMARY wew
PROGRAM SIZE! 00 Go002

EXTERNAL OR UNDEFINED REFERENCES! A

Explanation:

m Line 2 references the label A(1). Since no member of the set A(i) is defined,

an external reference to A is made.

® Line 3 defines the set B(i) in general and the member B(1) in particular.

@ Line 4 references an undefined member of the set B(i). Its value is taken to

be zero.

If reference is made to a dimensioned label, some member of which was previously

defined with a smaller dimensionality, an expression error results, and the value

of the referenced label is taken to be zero.

Example:
LABEL OPERATION OPERAND
10 20 30 40
.A,L(]‘l)l S S | L. ElQJu‘ | W N | I} Isl 1 L i | S EN N | I I_.4 - 1_H) L
IR L Y %, (A AR .l.,AJSJ‘.]'lzl)i ! pbo b !
N S R I NN YU O O WU U WY T U O U Y O S WO NN O A O O O I TR G 0 U SO0 WO |

As stated previously, the dimensionality of a subscripted label is constant. As
a result, all members of a set of dimensioned labels must have the same number
of subscripts. An expression error results if a subscripted label is defined

at a different dimensionality than another member of the same set, that is, with
different subscript values but using the same label.

While the user defines the values of a particular dimensioned label, the assembler

internally defines values for the label with lower dimensionalities, These may be
referenced (but not defined) in the course of the assembly. For example, if the
label A(1,2,3,4) is defined, the labels A, A(1), A(1,2), and A(1,2,3) are internally
defined by the assembler. (Note that the name of a dimensioned label must be
unique and may not duplicate a simple label.) If a dimensioned label is defined,
all labels of lower dimensionality having the same name are therefore implicitly
defined by the assembler. The values associated with these assembler-defined

labels is described in the following paragraphs.

UP-7599
Rev. 1

1

SECTION:

UNIVAC 418-111 RTOS ASSEMBLER l

PAGE:

An n-dimensional set of labels, A(Sl'SZ’SS"“’Sn) is defined. Many different
values of each of the subscripts s; may have been used in defining the set of
labels. Each subscript s; has been used n; times; there are n; different subscript

values Si-

The set of labels defined is:

A(1,2,3)
A(5,7,3)
A(5,8,3)
A(7,2,2)
A(8,9,0)
A(1,2,4)

Then: ny = 4 because there are four different subscript values defined in the
first dimension,

for sq =1,np =1
because only one subscript value (sp = 2) has been defined;
for sq =5, n2:2

because two values (52 = 7 and 8) have been defined with the
same subscript s = 5;

for sy =7 and 8, ny = 1

because one value (52 =2, sg = 9), has been defined with each
of the subscripts sq = 7 and s1 = &;

forslzlandSZ:Z,nZ:Z

because there are two values (s3 = 3, s3 = 4) with the same
subscripts sy =1 and s9 = 2.

The dimensioned labels of the form label(sl,sz,...,s-), where j < n, are defined
by the assembler to have values equal to the number of different subscripts used
in the next higher dimension specification.

Example:

000001 /e

000002 000144 Al1,2,43) EQU 100
000003 000310 A(B47,43) EQU 200
000004 000454 A(S5,8,3) EQU 300
000005 000620 Al74292) EQY 400
oogooé 000764 A(B,9,0) EQU 500
oooco? 001130 AL 2,4) EQU 600
000008 .

0o0c0Y 00 oYonoo 000144 *AL19293)
0ooo10 00 000001 0ooo0o4 +A

oouo1l 00 0UQO0D2 000001 *ALL)

000012 00 000003 000002 +A(5)

006013 00 000004 000001 «A(7)

000014 00 090005 000002 *A(12)
000015 00 000006 000000 +A(5,9)

0opo1é END

SECTION:

UP-7599 1 7
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER bace:

Explanation:
m Lines 2 through 7 define a set of dimensioned labels A.
® Line 9 generates the value of the label A(1,2,3).

m Line 10 generates a number equal to the number of different subscript values
sy defined in the set. A = 4 because ny =4 (sl =1,5,7,8).

B Line 11 generates a number equal to the number of different subscript values
Sy defined in the set A with sy = 1. A(1) = 1 because only S9 = 2 has been
defined with s =1,

B Line 12 generates the value n, for sy = 5.

ng = 2 because Sg = 7 and 8 for s1 = 5.

m Line 13 generates the value ny for sy =7,
ny =1 because only sgp = 2 forsy =7.

® Line 14 generates the value n3 for s; =1 and sy = 2.
n3 = 2 because s3 = 3 and 4 for s1 = 1, Sy = 2.

m Line 15 generates the value ng for sy =5 and sg = 9.

ng = 0 because no value with Sp = 9 has been defined.

Label Value Definition
A(1,2,3) 100 explicit*
A(5,7,3) 200 explicit*
A(5,8,3) 300 explicit*
A(7,2,2) 400 explicit*
A(8,9,0) 500 explicit*
A(1,2,4) 600 explicit¥
A 4 implicit
A(l) 1 implicit
A(5) 2 implicit
A(7) 1 implicit
A(8) 1 implicit
AQ1,2) 2 implicit
A(5,7) 1 implicit
A(5,8) 1 implicit
A(7,2) 1 implicit
A(8,9) 1 implicit
A(9) and all
others 0 implicit

*See foregoing example.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER

1

SECTION:

PAGE?

1.3.1.4.

The purpose of using dimensioned labels as opposed to simple labels may vary.
The DO directive and procedures are capable of generating more than one word
of data or series of instructions. Combined with these tools, dimensioned labels
provide an extremely convenient method for manipulating arrays of any desired

dimension.

Location Counter Declaration

When a program element is assembled, relocatable object code is produced as a
result of the assembly. When the assembled program is loaded by the loader, the
actual address values are assigned. The relocatable code produced by the assem-
bler is therefore relative to a base address assigned by the loader when the
program is executed. A location counter specifies under which base address a
particular word is to be generated. There are 16 location counters (0—15) within
any one assembly. Any location counter may be used or referenced in any sequence.
The loader regroups the data generated under the various location counters so that
each appears in memory as though the code within the location counter was gener-

ated contiguously.

A program remains under control of location counter 0 if no location counter is
explicitly specified. When a specific location counter is specified, all subsequent
coding is generated under its control until another location counter is specified.

—>> A specific location counter may be activated by $(n) as the first entry in the
label field, where n represents an expression whose value is within the range
of 0 through 15 and denotes the location counter to be activated.

Coding may be present in the same statement which defines a new location

counter. If this is done, the code generated will be under control of the new
location counter. If a label is desired on a line of code which also defines a
new location counter, the format is:

operation

operand

If a symbol is used in defining the location counter, it must have been previously

$(n),label
defined.
Example:
popooi
000002 00
000003 00
000004 0%
000005
000006 05
000007
vooooe 00
006009
0o
05

o0Goouo
olooo1
000000
00op0!
000002

0Upoo3
o0ooo2

/e
70 0005
55 poo3
71 0o03 $(5),LABEL
55 0002
stlel)e
770301

000000
ooonoz2

LLK 5

J1 (LABEL)
ALK k]

LIy

Ji ($(D))

gRRORS
END

UP-7599

' 1
Rev. 1 UNIVAC 418-111l RTOS ASSEMBLER

SECTION: PAGE:

Explanation:
@ Line 2 generates an LLK 5 instruction under location counter O.

m Line 3 transfers control to the address denoted by LABEL, which is not
necessarily the next address because it is defined under a different location
counter.

m Line 4 defines LABEL under location counter 5 and generates an ALK 3 in-
struction under location counter 5,

B Line 6 transfers control back to the next address under location counter 0.
m Line 7 reactivates location counter 0.

m Line 8 generates a procedure call ERRORS$. The transfer made in line 6 will
be to this address.

1.3.2. Operation Field

The operation field defines the purpose of the symbolic statement. The operation
field starts with the first nonblank character following the label field., If no label
field value is present, at least one blank character must be coded before defining
the operation field. The operation field may contain any one of the following:

B a mnemonic operation code identifying which instruction is to be generated;

m an assembler directive specifying some special function to be performed by the
assembler (see Section 2);

B a FORM reference specifying that a data word is to be constructed according to
the format defined by the FORM directive (see Section 2);

B a procedure reference specifying that some procedure is to be assembled (see
Section 3); or

a data word generating code specifying that one or more words of data constants
are to be generated.

The operation field must be terminated by at least one blank character unless:
B a procedure reference is made,
® a data generating code is defined, ot

B a period is used to terminate the entire statement.

If a procedure reference is made, the operation field may be terminated by a comma
followed by procedure parameters. If a data generation code is defined, the data
word may immediately follow the identifier.

The content of the operation field determines the value of the active location
counter. If an instruction is generated, the location counter is incremented by

1 or 2 depending on whether an 18- or 36-bit instruction is to be generated. If an
assembler directive is referenced, the location counter value may or may not be
advanced depending on the specific directive. A FORM reference may cause the
location counter to be advanced by one or two depending on the specified FORM
directive. A procedure reference may cause the location counter to be advanced

by an indefinite value, depending entirely on the definition of the procedure sample.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

10

1.3.3.

A data word generating code will cause the location counter to be advanced depending
on the number of words generated.

Example:
000001} /e
000002 00 00pooo 36 0003 LBx 3
000003 FR FORM 6912
000004 00 00000} 00 0002 FR DyLABEL
000005 v PRCALsPAR]
000006 00 o00pou2 204511 LABEL +1043
00 000003 4631464
ooopoo7 END
Explanation:

m Line 2 specifies generation of an LBK instruction.

m Line 3 is an assembler directive defining the format FR.

m Line 4 is a FORM reference.

a Line 5 is a procedure reference on the procedure PRCALL.

m Line 6 is a data constant.

Operand Field

The operand field starts with the first nonblank character following the operation
field. The components of the operand field are called expressions or subfields and
define the information necessary to complete the type of statement specified by
the operation field.

The operand of a mnemonic instruction or data constant requires only one expression
which is terminated by a blank character.

Several of the assembler directives do not require an operand. Others require several
expressions. When groups of expressions are used, they are separated by commas. A
group of such expressions is referred to as a list of expressions. Procedures may
permit multiple lists of expressions. When omitting a subfield other than the first or
last subfield, the construction comma—zero—comma (,0,) or two contiguous commas
(,,) is necessary. Ending subfields may be omitted entirely if unnecessary.

Example:

LABEL OPERATION OPERAND

10 20 30 40

N O U D T N LY S S a1
e 18 TAG

Lol do o d o cdi b [Lodo..1 i
Lol Lol L1 IMlulleI e 8O 1F1R16|M1 |HIE lRLE! T |TIHIE1R1EI Ll 1
Lol CPL 1 it b s

LllllllFllenilllll3lllslll‘loil‘lllIJlIxJiliiilllll

l,il,llllllllllllllllllLilllL,_llIlllll[lIllllll_,_

UP-7599
Rev. 1

1

UNIVAC 418.11l RTOS ASSEMBLER cecrion: .

11

1.3.4.

1.3.5.

000001
000002
0000603
000004
ooooos
000006
600007
000Co8
000009
000010
0000114

1.3.6.

Explanation:

m Line 1 is a mnemonic instruction. The operand field contains an expression
whose value is 5.

®m Line 2 is a mnemonic instruction. The operand field contains an expression
whose value is the relocatable address TAG.

m Line 3 is a procedure call containing five lists of expressions.
m Line 4 is a mnemonic instruction not requiring an operand.

® Line 5 is a FORM directive. The operand field contains one list of three
expressions or subfields,

Comment Field

The construction space—period—space (5.5)terminates a line of coding. Any addi-
tional subfields implied by the operation field are taken to be zero. Any characters
following the space—period—space are printed on the assembly listing and may be
used as comments to clarify the purpose of the line of code. If the operand field
has been totally specified, comments may immediately follow the blank character
which terminates the operand field.

Line Continuation

A symbolic line may be continued to the next card image. When a semicolon is
encountered during the processing of the label field, the operation field, or the
operand field, the next card image is read and processing continues starting with
the next nonblank character. If a new list is to be defined on a continuation card,
at least one space should occur before the semicolon.

If a semicolon occurs in the comment field, whether defined or implied, it is not
treated as a continuation character, and the next card image is processed separately.
Continuation to the next card may be specified in any of the three basic fields. In
some situations, such as the first reference to a library procedure, the label and
operation field must be specified on the same card image. In general, it is recom-
mended that semicolons only be used in the operand field.

Example:
/e
00 OUgooo oooooo LABEL .8
00 00000 LABELT RES 10
noooo2 A EQU 2
000003 8 EQU 3
D 777776 TAG EQU LABEL+1~(A>D)=(p<B)
TAG EQU LAB? COMMENTS MaAY
ELTS FOLLOW THE 3
¢le(Ad0)=;
D 000000 . (B<H)
END

Ejection of Paper

A slash (/) appearing in column 1 advances paper in the printer to the top of the
next page. This line may not contain any coding but may contain comments. The
slash prints on the new page (see 2.11).

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER

SECTION: PAGE:

12

1.4,

1.4.1.

EXPRESSIONS

An expression is an elementary item or a series of elementary items connected by
operators. Blanks are not permitted within expressions. The values of elementary
items can be combined through operators (see 1.4.2). The resulting value becomes
the value of the expression. In addition to having an arithmetic value, each elemen-
tary item has associated with it a mode value which indicates whether the numeric
value of the item is constant, that is, cannot be changed, or is relocatable, that is,
relative to some base constant to be determined at some later time. This base con-
stant is generally a storage address or drum address determined by the job loader
prior to execution of the program. In combining elementary items to form an expression,
the mode values of the items are also operated upon to form the mode value of the
expression. When combining elementary items to form an expression, some care must
be exercised to ensure that the resulting mode value of the expression is also correct
(see 1.4.4).

In combining elementary items to form an expression, the symbolic statement is
scanned and interpreted from left to right. Parentheses may be used to force items

to be combined in a different order. All expressions within parentheses are evaluated
before their tesults are available to be operated upon. Up to six nested levels of
parentheses may be used.

Elementary Items

An elementary item is the smallest element of assembler code that can stand
alone; an elementary item does not contain an operator.

The magnitude of the value of an elementary item may not exceed 236-1, that is,
0777777777777, If an elementary item is not defined, it is assigned a value of
zero. Expressions containing undefined (externally referenced) elementary items
may not exceed a magnitude of 218-1, that is, 0777777.

There are eight ways in which elementary items may be represented. They are
discussed in the following paragraphs.

1.4.1.1. Symbolic Label

Any label may be used as an elementary item. The value of the item is the
relocatable location counter value of the statement associated with the label.
If the label was defined with an EQU directive, the item value is that of the
operand expression of the EQU statement., Undefined labels have a constant
zero value,

Example:
000001 /e
000002 00 oUpooO 12 oool TAGZ LL TAG
000003 00 000001 12 oooo TAG LL TAG2
000004 END
Explanation:

m Line 2 defines TAG2 to have a value equal to the relocatable location counter
value of the word containing the instruction LL TAG, The operand field contains
an expression formed by a single elementary item TAG. The value of TAG is
defined in line 3 as the relocatable location counter value of the word contain-
ing the instruction LL TAG2.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER 1

SECTION:

PAGE:

13

1.4.1.2,

1.4.1.3.

1.4.1.3.1.

Location Counter

The relocatable value of any of the location counters may be used as an elemen-
tary item. The symbolic representation of a location counter value reference has

the form:

$(expression)
or

$

If a dollar sign alone is used, the value of the elementary item is the current
value of the active location counter. If a dollar sign followed by a left paren-
thesis is used, the expression value contained within the parenthesis defines
which location counter is referenced. The value of the expression must be
between 0 and 15. It should be remembered in using the $+n that some instruc-
tions increment the location counter value by 2.

Example:

oooool /e

pooon2 00 00po0oo RES 8

000003 02 otpooo oooolio s(2) * $(0)

000004 00 o0poio 58 opno!l $(0) J1 $(2)

000005 00 00001} 34 go14 J $+3

0ooo06 00 000012 502000 LSp s(2)
00 0000i3 ooooog

oopon7 END

Octal Numbers

An octal number is an elementary item. An octal number consists of a group of

octal integers (0—7) preceded by a 0. The value of the number is the value of
the elementary item,.

Example:

0000601 /e

000002 00 00ocoo 000077 +077

000003 00 000001 000301 +03010130123
00 000002 013013

000004 00 000003 36 D017 LBK 017

0o000S

END

Double-Precision Octal Numbers

A double-precision octal value is produced by writing an octal constant larger
than 18 bits or placing a letter D immediately after the last octal digit.

Example:
0000014 /e
000002 00 0UDoOD 00000 +0770
oo 000001 DOOO77
000003 00 0UODD2 00000 +01000000
00 0UDDU3 006000
000004 00 000004 000000 +1Dp+017

00 00ooos 000020
000005 END

UP-7599
Rev. 1

UNIVAC 418-1i1 RTOS ASSEMBLER

SEC TION:

PAGE:

14

1.4.1.4.

Decimal Numbers

A decimal number is an elementary item. A decimal number consists of a group
of decimal integers (0—9) the first of which is not a zero.. The value of the
elementary item is the value of the number.

Example:
000001 /e
oouoo2 00 0UODOD 000115 77
ggggg: 00 0U00UI 000100 +64
00 000002 36 0017
000005 Enp '

END

1.4.1.4.1. Double-Precision Decimal Numbets

1.4.1.5.

A double-precision decimal value is produced by writing a decimal constant
whose value is larger than 0777777 or by placing a letter D immediately after
the last decimal digit.

Example:
000001 /e
000002 oo ouaooo 000000 +«770
ou 0Gooul 000415
000003 00 000002 000000 +64D
00 0vo0003 000100
000004 oo 000004 000000 +lp+l7
o0 000005 oooo22
000005 . END

Alpha Constants

Alphabetic, numeric, and special characters may be represented in 6-bit XS-3
code. When such characters are enclosed within apostrophes, the enclosed
characters together form an alpha constant. The value associated with each
character of the alpha constant is the 6-bit XS-3 code as defined in Table 1-1.
The value of the elementary item is formed by stringing together the values
associated with each character.

NOTE: A semicolon is a special character which is generated when enclosed

by apostrophes. Therefore, it may not be used as a continuation character
in an alpha constant or alpha string.

Example:

00000} /e

000002 00 o00gooa 000024 a0

000003 00 000001} 002425 +058"

000004 00 000002 242524 +05BCY

000005 o0 000003 70 0024 : LLk A
000006 o0 000004 71 vool ALK LAY

ooooo7 END

UP-7599

Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER

SECTION: PAGE:

1.4.1.5.1.

The 6-bit value associated with a character in an alpha constant may be re-
defined through the use of the CHAR assembler directive (see 2.7).

An apostrophe may be present as a character within the alpha constant by
coding two contiguous apostrophes for each apostrophe in the constant.

Example:
/o
1900
ggggg; 00 00pODOO 000056 :"'..A'
000003 00 0UQOO1 565624 o
000004

If the alpha constant consists of one, two, or three characters, the value of the
elementary item is right-justified, zerofilled. If the alpha constant consists of

four, five, or six characters, the value of the elementary item is left-justified,

spacefilled, and generates two words.

An alpha constant may not consist of more than six characters (see 1.5.2).

Example:

oooool /e

ooo002 Do 000000 000024 srp

000003 00 00p00} 002428 LAY

000004 00 000002 242524 +taBCY

ooooos 00 0PDDD3 2425264 +*BCD!
00 00000« 270000

000006 00 00000s 242526 +'5ABC ¢
00 00opus 00D0OOD

ogoua? END

Double-Precision Alpha Constants

A double-precision alpha constant is one which consists of four, five, or six
characters, or one which is immediately followed by the letter D.

Example:
oooool /e
oopoo2 00 000000 [sIeLsYs]als] *YAYD
00 000004 000024
o0oo0o03 0o 000002 242526 +1,8C DE?
00 0UooD3 002730

000004 END

UP-7599
Rev. 1

1

UNIVAC 418-111 RTOS ASSEMBLER l

SECTION: PAGE:

16

1.4.1.6.

1.4.1.7.

Floating-Point Numbers

A floating-point number is an elementary item. The value of the elementary item
is the 36-bit binary number formatted according to the hardware representation of
floating-point numbers. Note that in manipulating floating-point elementary items,
the assembler uses double-precision integer arithmetic so that expressions of the
type

1.0 +1

result in a binary number which is the result of an integer arithmetic addition of
the two elementary items.

A floating-point number is recognized by the presence of a decimal point immedi-
ately following a decimal number. The format of a floating point number is one of
the following:

d.

d.d
d.dEse
d.Ese
d.Ee

where: d represents one or more decimal digits,
s rtepresents the sign of the characteristic and may be either + or —.

e represents one or more decimal digits which define the power of 10
by which the number is to be multiplied.

Example:

000001 /e

000002 00 00p000 201400 1,
00 000001 oooooo

000003 00 00pou2 201403 +1,015
00 000003 656050

000004 00 000004 200400 40,5
00 000005 000000

000008 00 000006 203500 40,56+
oo 00ooo7 000000

000006 00 000010 174631 *0,5E~1
00 0UDDIL} 463146

oogoo7? 00 00po12 21647) +1000324E2
00 000013 406314

000008 END

Parameter Reference Form

The parameter reference form (PARAFORM) is an elementary item as long as the
procedure sample is being processed. The definition, explanation, and use of
paraforms are given in Section 3.

UP-7599
Rev. 1

1

UNIVAC 41811l RTOS ASSEMBLER cection: rces

17

1.4.1.8. Line Items (Literals)

A line item is any symbolic line, less label, enclosed in parentheses. Line items
may be elementary items.

A literal is represented as an expression enclosed within parentheses and without
connecting operators. The assembler then generates a word containing the expres-
sion value, and this word appears in a literal table at the end of the program. The
value of the line item is the address of the generated constant,

Duplicate literals do not appear in the literal list. When location counters are
used, the literals appear at the end of the coding associated with a particular
counter with only duplicated literals for that particular counter eliminated (see

2.16).

Literals may be double-precision if the symbolic line is a single subfield data
of the double-precision form. The value of this expression is the address of the
first word of the literal.

Line items within line items are permitted up to five levels. If an operator im-
mediately precedes an item enclosed within parentheses, the item is not a literal.

Example:
ooongl /o
ooooo2 00 0CpoUo 12 0007 LL (YEND?)
000003 00 0CoouUi 32 0010 LB (0101)
000004 00 00g00u2 10 ooyl Ly (J 5+85)
000005 00 OUpoUa 10 0013 Ly (Lo (17
000006 00 000004 70 4600 Lik +iSLL O
000007 00 0Uooos 10 o014 LA (1.0}

00 000006 12 0015
000008 END

o0 oloooy 305027
00 000010 000101
00 00g01} 34 o007
00 000042 000017
00 oUoots 10 0012
00 0UpOoLHY 201400
00 00001s 000000

1.4.2, Operators

There are 12 operators in the assembler which designate the method, and implicitly
the sequence, to be employed in combining elementary items within a subfield. Blanks
are not permitted within an expression. Evaluation of an expression begins with the
substitution of values for each elementary item. The operations are then performed
from left to right in hierarchical order as listed in Table 1-2. All the operators listed
are assembly-time operators.

The operation with the highest hierarchy number is performed first; operations with
the same hierarchy number are performed from left to right, To alter this order,
parentheses may be employed but care should be taken to avoid redundant paren-
theses which may result in the generation of a literal.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER 1

SECTION: PAGE:

18

If an elementary item or an expression is enclosed in parentheses and an operator
appears adjacent to the parentheses, the function of the parentheses is that of
algebraic grouping. The value of this quantity is the algebraic solution of the items
or expression enclosed in parentheses. This value should not be confused with the
value produced by a literal and, therefore, is not an address.

HIERARCHY OPERATOR DESCRIPTION
Highest .6 */ a*/b is equivalent to a*2P
5 * arithmetic product
/ arithmetic quotient
7/ covered quotient (a//b is equivalent

to a+b-1
b

4 + arithmetic sum
arithmetic difference

3 * ok logical product (AND) ~Jio
10
0]00
2 ++ logical sum (OR) L
1]11
010
2 -- logical difference
(EXCLUSIVE OR) 410
1]o1
0]10 .
Lowest 1 = a = b has the value of 1 if true,
0 if otherwise
> a> b has the value of 1 if true,
0 if otherwise
< a<b has the value of 1 if true,

0 if otherwise

Table 1-2. Hierarchy of Operators

In the absence of parentheses, the rules of priority determine the sequence in which
operations are performed within an expression. When two or more operators of the
same priority are used, the sequence of interpretation is from left to right. The
following two sample problems illustrate this point:

PROBLEM 1: 0.2*%3 +412%%6 The result is 7.
after step 1 9-6++12*%*%6

after step 2 3++12%*6

after step 3 3++4

after step 4 7

UP-7599

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER SECTION: 1 PAGE: 19

PROBLEM 2: ((9-(2*3/4))++12)**6 The result is 4.

after step 1 ((9-1)++12)**6

after step 2 (8++12)**6

after step 3 12*%*6

after step 4 4

1.4.2.1. Shift Exponent (*/)
The shift exponent allows the programmer to enter a number and specify its
binary positioning to the assembler. The shift may be left or right according to
the sign of the exponent (-b produces a right shift), x*/b is equivalent to
x*2b,
If the sign of the exponent is positive, a left-circular shift of the number is
performed. If the sign of the exponent is negative, a right-arithmetic shift of
the number is performed.
Example:
000001
000002 00 oUooUo 000060 “be/3 embeB
000003 00 000001 0DODO3 *6e/=1 smb/2
000004 00 000oU2 777770 -073%/=3 en=073/8
000005 00 000003 700000 +(0777777e/18)8/=3
000006 END
1.4.2.2, Arithmetic Product (*)

The integer value of the first item, the multiplicand, is multiplied by the integer
value of the second item, the multiplier, to produce a product which becomes the
value of the expression or next item.

Example:
rx

oooool

2 oo 000000 popo20 XY
ggggg3 00 o0Uoooy 000040 o«.l:/: -:;::
000004 00 000002 ooo100 “(4e2)0/3 . .
000005 0o000S5 I EQU :
000006 000002 13 QU vor
000007 o0ooot2 BL E:g 1L

oooooe

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER 1

SECTION: PAGE:

20

1.4.2.3.

1.4.2.4.

1.4.2.5,

Arithmetic Quotient (/)

The integer value of the first item, the dividend, is divided by the integer value
of the second element, the divisor, and the resultant quotient becomes the value
of the expression or next item.

Example:
ooo0o0! /e
000002 00 00pooL opoo02 “4/2
000003 o0 000001 ooooo2 +4e2/3
000004 00 00o002 000000 +4e(2/3)
000005 00 000003 000000 +4e2/30/3 em{492)/24
000006 END

Note that the remainder of the division is discarded and that the quotient resulting
from a divide must be less than 218-1.

Covered Quotient (//)

The covered quotient operates the same way as the arithmetic quotient with the
following exception, If the remainder of the division is greater than zero, one is
added to the integer value of the quotient. The resulting integer is substituted
in the expression. The covered quotient may be expressed in the following form-
ula:

a+b-1
a//b=—"T"""
b

Example:

000001

000002 00 0Uoooo gopoO2 ’
gggggz 00 ogunu; 000004 :::::/3
00 0 1
B¢0dng 0002 000CO4 25-45//3)
b

Arithmetic Sum (+)

The arithmetic sum operator produces the algebraic integer sum of the values of
two items.

Example:
000001 /e
000002 oo 000000 000007 *542
000003 00 090001 12 poO3 LL $+2
000004 00 00DDG2 DCOO4S +542030/3
00000S 00 000003 000250 “(5+2)03e/3
000006 00 000004 000250 +0(5+2)%3)0/3

000007 END

UP-7599

Rev. 1

UNIVAC 418-1il RTOS ASSEMBLER

SECTION:

PAGE:

21

1.4.2.6.

1.4.2.7.

1.4.2.8.

1.4.2.9.

Arithmetic Difference (-)

The arithmetic difference operator produces the algebraic integer difference
between the values of two items.

Example:

oopool

noooo2 00 oUnoon 12 ooo2
000003 00 0UboUL 000003

0ouo04 00 000002 777776

000005 00 OUopua 000011

0o00Uus

Logical Product (**)

The logical product operator (AND) produces the logical product of the values

of two items.

Example:

03**05 The result is 01,

000011
** 000101

000001

Logical Sum (++)

LL $44=2
*5=2

+5w2e3
*(5=2)9%3
END

The logical sum operator (OR) produces the logical sum of two items.

Example:

03++05

000011
++ 000101

000111

Logical Difference (--)

The logical difference operator (XOR) produces the logical difference between

The result is 07.

the values of two items.

Example:

03--05

000011
-- 000101

000110

The result is 06.

UP-7599 .
Rev. 1 UNIVAC 418-ill RTOS ASSEMBLER

SECTION: PAGE:

1.4.2.10. Equal (=)

The integer value of the first item is compared with the integer value of the
second item. If the two values are equal, the result of the operation is a binary
1. If they are not equal, the result of the operation is a binary 0.

Example:
000001 /o
000002 . 000U05 A EQU 5
000003 00 OUooun 70 goo3d LLk (Am5)wde(a=6)02
000004 END

1.4.2.11. Greater Than (&)

The integer value of the first item is compared with the integer value of the
second item. If the value of the first item is greater than the value of the second,
the result of the operation is a binary 1. If the integer value of the first item is
less than or equal to the second, the result of the operation is a binary 0,

Example:
et 000005 1. EQU 5 2
gggggg 0o 0UDOOD 36 0000 LBK :::?;::;(A<5)-
00uooH 00 0UDCOLY 70 von0 :t§ NG
000005 o0 000002 71 0003 ALK
oooponé

1.4.2.12, Less Than ()

The integer value of the first item is compared with the integer value of the
second item. If the value of the first item is less than the value of the second
item, the result of the operation is a binary 1. If the first value is greater than
or equal to the value of the second, the result of the operation is a binary 0.

Example:
00Qootl /e
000002 000005 A EQU 5
000003 oo ouogoo 34 0000 LBk 3e(ALS)
000004 00 oGooul 70 0003 LLk 3e(AL15)
000005 00 0UpDDO2 71 0000 ALK 3e(AcC2)

000006 ENp

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 1

SECTION: PAGE:

x

1.4.3. Interbay Offset Operator (1)

The interbay offset operator (IBOO) is a special operator recognized by the assem-
bler which operates only on the mode of an expression. When the IBOO operator is
present in an expression, a flag is set in the relocation output which causes the
loader to relocate the data word in a special manner. If used, the IBOO operator
must follow an elementary item, and may be followed by an operator.

Example:

cooool /e

000U02 00 000000 32 u0D3 L8 (LABELT)
0o0Da3 00 0UOOU: 32 poOOY La (LABELI+1)
0oVLO4 00 0U00UZz 0QDWOD LABEL +0

00unos END

00 0uUDOow3 0gooo2
00 0UQOUA o0oono3

The purpose of the IBOO operator 1s to facilitate the accessing of storage in
different bays.

Consider the following ways of accessing the contents of location FROM, which
may be located anywhere in storage.

Examples:
oonuot /s
L (s)
oogoo2 00 0000V 12 Quie Lt
oooon3 00 0Yooot 52 0013 AND (0770000)
oouoo4 o0 oUnouz 44 0010 St BAY
000005 .
000006 v 00 0000UL3 12 0014 LL (FROM)
oopuo7 00 0UDOGHY 16 0049 ANL BAY
oouons 00 oYoous 44 0D}! SL FROMR
000009 B
000010 00 0U0DOs 32 001! LB FROMR .
0000141 00 0UQDA7 13 0000 LL Y] «(AL)=(FRQM)
opboo1z 00 oUpnyin 000000 BAY +0
000013 on 00opoiy 000000 FROMR 0
000014 END
oc odooi2 000000
00 000013 770000
v 00 0UODLY 000000
ouuooi /e
ogunp2 v 00 ovoouo 3z DooY LB (FROM)
000003 00 0UQoO| 5073 20 LSR 029
000004 00 00goo2 13 gooo LL *0
000005 00 0U00U3 5N073 00 LSR 0 «(AL)m(FROM)
00p0Us END
[00 0UoNOY 000000
000001 .
0oono2 v 00 0looup 5073 20 .
boooos 00 990001 12 0000 "y From "
0]
000008 00 oUnugz 8073 00 LSR o e (AL)=(FROM)

END

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER ‘

SECTION: PAGE:

24

1.4.4.

Each of the three foregoing methods has particular advantages. The first example
uses six instructions to set up a bay-relative address. Subsequent references use
two instructions. The disadvantage comes about if many different locations are to
be accessed in this manner.

The second example is disadvantageous if frequent accesses have to be made
because four instructions are used each time.

The third example still uses three instructions each time and is valid only if
FROM is an external reference. If FROM is defined within the assembled program,
the LSR operand specification should be coded as:

LSR 020 + FROM - (FROM**0777777).

The IBOO operator causes the loader to relocate the specified value as follows:

(VALUE)+(REL. BASE)-(BAY IN WHICH VALUE IS STORED) .

As a result, the above access may be performed as follows:

oagouoal /e
oouwo2 v 00 0UBDOGO 32 woo2 L8 {FROM;
oonond 00 0VY0001 13 op0@ L .0
oouoo4 END

¥} 00 0UQOOD2 goponr

Expression Modes

As stated previously, each elementary item has both an arithmetic and a mode
value. When operators are used to combine elementary items to form an expression,
the mode values of the elementary items are combined also to form the mode of

the expression.

Table 1-3 gives the rules for determining whether the result of a binary operation
is relocatable.

UP-7599

Rev. 1 UNIVAC 418.111 RTOS ASSEMBLER cecrion, e 20
LEVEL| 1st|ITEM OP ERATOR 2nd ITEM RESULT NOTE
1 Any <,=,> Any Not relocatable
2 Any 4= Any Not relocatable 2
3 Any * Any Not relocatable 2
4 Not relocatable +,- Not relocatable Not relocatable
Relocatable +4 Not relocatable Relocatable
Not relocatable +,- Relocatable Relocatable
Relocatable +,- Relocatable Relocatable 1
5 |Any */2// Any - Not relocatable 2,3
6 Any */ Any Not relocatable 2
NOTES:
1. The difference between two relocatable quantities under the same location counter is not
relocatable.
2. Except as noted for level 4, the relocation error flag (R) is set for these operations.
3. Multiplication of a relocatable quantity by an absolute 1, or absolute 1 by a relocatable

1.5.

The mode values associated with a line of code may be examined by using the M
option on the ASM control card (see Section 4).

quantity is relfocatable. Multiplication by absolute 0 is absolute 0. In either case, no error

flag is set.

Table 1-3. Rules for Determining whether Results of Binary Operations are

Relocatable

DATA WORD GENERATION

A + or — in the operation field followed by a single subfield generates one or more
data words. The + or — sign may be separated from the subfield by any number of
blanks. If the first item in the expression is a number or an alpha constant, the +
or — may be omitted. If the mode value of the operand exptession signifies that the
data word is double-precision, two 18-bit words are generated. In the absence of a

+ sign, the value of a number is taken to be positive.

The operand field of a data generation statement may contain:

m an expression or elementary item

2 an

alpha string

® a double-precision floating-point number

UP-7599
Rev. 1

UNIVAC 418.111l RTOS ASSEMBLER 1

SECTION: PAGE:

26

1.5.1.

1.5.2,

Data Word Expressions

The operand field or operation field may contain an expression. A data word con-
sisting of the value of the expression is generated.

Example:
ooopoo! /e
ooooo2 00 o0pouo 000005 +5
oouoo3 00 00po001 000002 TAG +Sel
000004 00 0UpOO2 000004 *TAGHD
000005 00 000003 201400 +1,0
00 00poux 000000
000006 00 00000%s 000000 +5p
00 00gous 000008
coooo7 00 00pou7y 000001 +(TAG)
ooo008 00 o0ooio po0012 (TaG)
000009 o0 000011 001137 +200(2742)+4037
000010 END

00 000012 cooou1

Alpha Strings

An alpha string consists of a series of alphabetic, numeric, and special characters
enclosed within apostrophes. Two successive apostrophes within the string are
equivalent to a single apostrophe which does not signify the end of the string. For
each three characters in the string, one 18-bit data word is generated which consists
of an alpha constant equal to the binary equivalent of the three characters.

Characters are left-justified, spacefilled unless the string consists of less than
three characters. In this case, an alpha constant (right-justified, zerofilled) is
generated.

Example:
oovool 00 00pooo 663334
+*THIS
oo ooona se3a3 T IS AN ALPMA STRING!
00 00Q002 650024
00 0UQOU) 500024
00 0UpOOY 465233
00 00oogs 240065
00 00poODe 665434
00 oOgoo? 503200
Dopuo2 00 oUooio ooDo24
000003 ey

END

UP-7599
Rev. 1

UNIVAC 418-1ll RTOS ASSEMBLER 1

SECTION: PAGE:

27

1.5.3. Double-Precision Floating-Point Numbers

Double-precision floating-point numbers may be generated which conform in format to
the conventions established in the FORTRAN compiler. A double-precision floating-
point number consists of three 18-bit words. The first word contains the character-
istic; the second and third contain the mantissa. If a floating-point elementary item
occurs which specifies more than 27 bits of significance, or which contains the
letter D in the exponent instead of the letter E, a double-precision floating-point
format is generated.

Example:
000001
00u002 00 0UOQUD 040007 ¢1,02
00 CUOODY 310000
00 0UDOU2 0DOOOO
000003 00 000003 040001 *1,23456789

00 00pOOY 236014
oo 00000s 510210
DoouDY po 000006 037755 «0,120=5
00 000007 536740
o0 o00ooio 501437
000005 END

1.6, DOUBLE-PRECISION EXPRESSIONS

As previously stated, several elementary items may be specified to be double-precision.
If an expression contains a double-precision item, the expression is said to be a double-
precision expression. When a double-precision expression is used to generate data, two
words are generated. If the line item specified in a literal is a double-precision item, the
literal value is the address of the first of the two words generated in the literal table.

The following restrictions exist when generating double-precision data words.

m An expression which contains an external reference may not be defined as a
double-precision expression.

w Simple labels may be defined to have a value which exceeds 218—1, but if such
labels are used to generate a data constant, only one word is generated which
consists of the least significant 18 bits of the value of the label.

Example:

oouool /e

000002 oooooo A EQU 01000000

000003 00 0Uo0OD 000000 A

000004 .

000005 000000 Di1) EQU A

oouooe D0 0UQO0O01 000000 *D(1)

goooQ? 00 0Ugno2 10 o010 LA (YABCDEF'")
00 00poOD3 12 004!

0ooDo8 00 000D« 10 o012 TAG LA (1e0)
00 000005 12 0013

000009 00 000006 10 oo1¢ LA (RS TAG)
00 0Coou7 12 0015

00u010 END

o0 oUpOILD 242526
00 000011 273031
00 000012 201400
D0 0UO0D13 no0ooo
00 000014 5010 00
Do 0UDOIS 0o oooY

UP-7599
Rev. 1

SECTION: PAGE:

UNIVAC 418-1ll RTOS ASSEMBLER I

2.1.

2.2,

2. ASSEMBLER DIRECTIVES

GENERAL

The assembler provides a series of special directives which provide the means to
control or direct the generation of object code. The symbolic assembler directives
control or direct the assembly processor just as the hardware operation codes control
or direct the central processor. The assembler directives are represented by mnemonics
written in the operation field of a symbolic line of code. The directives are used to
equate the expressions, control the location counter, format the object code, and
control the generation of object code. The general format for the directives is:

label directive specification

The manner in which the assembler interprets each directive varies and is described
in detail in this section.

EQU DIRECTIVE

The EQU directive is used to equate the symbolic label in the label field to the
value of the expression in the operand ”f1e1d Thereafter, this label may be used or

referenced in operand expressions. The operand consists of one list of one ex-
pression, The format is:

label EQU e

Except in the case of dimensioned labels, redefinition of a label causes the state-
ment to be flagged as duplicate; however, the value of the latest expression is used
when a reference to the symbolic label is made. All statements referencing such a
label are also flagged. When a directive is written which affects the value of the
location counter and which uses a label defined in an EQU directive to do this, the
EQU directive which defines the value of the label must occur first.

When the operand expression of the EQU directive is another labe], this label must

have been previously defined in the program assembly or not defined at all. If the
label referenced is defined after it is referenced, the statement is flagged as doubly
defined. If the label referenced is not defined, it becomes an external reference. Sub-
sequent references to the label defined through an EQU directive as equal to an ex-
ternal label reference the external label. The label defined in this manner may not
itself be externally defined.

UP-7599

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER
SECTION: PAGE:
Example:
0o:i0:51 GBASM M T2=1
UNIVAL 418111 ASSEMBLY == MAR 11 1970 00:10:51
ooouol /e
000002 000001 CODE €9y |
000003 000100 XCDE EQU 64+ (CODE™=L)
000004 770101 ZCDE EQU 0770001 ¢X%CDE
00000S 00 00pooo 70 0005 LABEL, LLk 5
+ 6,12 00
000006 000000 LAB2 EQU LABEL
000007 .
000008) 000005 DLB EQu 5
000009)] 000006 oLB EQU 6
000010 o ' 00 00poo1 000006 +0LB
- ie 0o
0oooll .
000012 [V} 00 0U00D2 D00C000 +DLB2
. 18 00 COpE
000013 [} 0000014 pLB2 EQuU oLB3
000014 D 00 0UODO3 000001 +DLB2
* 18 00
000015 000001 DLB3 EQU 1
000016 D 00 0UOOU4 000001 +01L82
* 18 00
000017 .
o0oo018 v 000000 uLB EQU EXDEF
000019 u 00 obooas 70 o000l LLK vLe+l
« 6,12 00 EXDEF
000020 .
0opo21! 1} 000000 ELBe EQU EXDEF o JLLEGAL
000022 END
we® SUMMARY eee
PROGRAM SIZE: o0 Uooos
EXTERNAL OR UNDEFINED REFERENCES! EXDEF
EXTERNAL DEFINITIONS: ELB
DOUBLY DEFINED LABELS: oLB2 DL8

Explanation:

a Line 2 defines CODE to have a

value of 1.

m Line 3 defines XCDE to have a value of 64.

m Line 4 defines ZCDE to have a value of 0770101.

s Line 6 defines LAB2 to have a value which is relocatable and equal to the

location counter value assigned to line 5.

m Lines 8 through 10 illustrate that D flags are generated if a label is redefined.

m Lines 12 through 15 illustrate forward referencing of a label and the associated

dangers in that a reference to the label is different depending on where the

reference is made.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

2.3.

m Lines 17 and 18 illustrate indirect external referencing.

® Line 20 illustrates an illegal use of external referencing and external definition.

The magnitude of the value of the operand field may be 36 bits, However, double-

word data generation may only be used through EQU directives using dimensioned
labels.

Example:
000001 /e £1000000
000002 000000 A E:u
o 3 00 000000 000000
goggg‘o 000000 YR D] EQU 01000000
000005 00 000001 000001 *B(})
00 000002 000000 .
000006 END
Explanation:

m Line 2 defines the label A to have a value of 01000000.

m Line 3 generates only one data word equal to the least significant 18 bits of the
value of A (sign extended). A zero is therefore generated.

m Line 4 defines the value of B(1) to be 01000000.

m Line 5 generates two data words, 1 and 0.

RES DIRECTIVE

The RES directive is used to redefine the value of the active location counter. If
the sign of the expression in the operand field is positive, an area of main storage
is reserved (buffer). The label, if used, is assigned to the location counter value
prior to changing it; that is, it refers to the first word of the reserved area if the
operand field is positive. The format is:

label RES e

Symbols appearing in the operand field must be defined prior to the use of the RES
directive,

In redefining the value of the location counter, no code is generated; that is, zeros
are not generated for the reserved area. Because the loading of a program is preceded
by clearing its main storage area, the RES directive, when used to define work area
buffers, effectively defines their value as zero.

Example:

000001 /e

000002 000002 1 EQU 2
000003 00 0UoooO WORK RES 56
000004 00 0CU0070 70 0005 LLx 5
000005 00 000071 00 I>1 , RES =1
000006 00 0Up070 70 0003 LLK 3

000607 END

UP-759¢9
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER o2

SECTION: PAGE:

Explanation:
m Line 3 reserves a 56-word work area.
m Line 4 generates an instruction LLK 5,

m Line 5 generates an LLK 3 at the location following the LLK 5; or, if I>1, the

LLK 3 in line 6 is generated at the same location counter value resulting in
erasing the LLK 5,

NOTE: The relocatable object code produced by the assembler is such that the
generated code is read in a single drum access by the loader as long as the
code is continuous, that is, as long as the location counter value increases
continuously. The RES directive may cause a break in the sequence of code
generated. In the same way, a change in the location counter under which
code is generated causes a break in the sequence. As a result, the program
load time is increased because multiple drum accesses have to be made.
Judicious use of the RES directive results in faster loading of the relocatable
code.

Example:

LABEL OPERATION OPERAND

1 10 20 30 40
i RES R TN SRR ST S TR SRR SR SN R
T T B T .21 R R S U S N B R S R SRR S B R S R S R B
Ii",l.llllll*lolilljlllll*!Il[LllllIII'lI|JElJIl"l
N T S U T T S T A B R W HE U S T IV S R R R R B R A S S S R I R
Explanation:
m Line 1 changes the location counter value by 2. As a result, a different drum access
is made by the loader.
2.4. FORM DIRECTIVE

The FORM directive describes a special word format designed by the user. The word
format may include fields of variabie length. The length in bits of each field is defined
in the operand field of the FORM directive. The value entered in the operand field
specifies the number of bits desired in each field. The format is:

label FORM €1,€9,...,€,
The number of bits specified by the sum of the values of the operand expressions
must equal 18 or 36 depending on whether a single or double form word is desired.
If the sum of the values of the operand expressions does not equal 18 or 36, an

expression error results,

By writing the label of the FORM directive in the operation field, the form defined in

that line of coding may be referenced from another part of the program. The label of

the FORM line is written in the operation field and is followed by a series of expressions
in the operand field. The expressions in the operand field specify the value to be in-
serted in each field of the generated word or words. .

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

2 5
SECTION: | PAGE:

A reference to a specific FORM label always creates one or two words composed in
the format specified. Truncation occurs and an error flag is set if a given value exceeds
the space indicated in the associated field in the FORM directive.

Unless the field size of the last expression is 12 or 17 bits, the data word generated
is a constant, If the last expression has a field size of 12 or 17 bits, the data word
generated may be 12- or 17-bit relocatable, depending on the mode of the last para-
meter supplied on the FORM call line.

Example:
000001 /e VT
000002 PTGF FORM 12,2,4
000003 007706 Py - EQU Y T 07706
000004 00 000000 770662 PTGF O PR
000005 1S FORM 6912
000006 00 000001 32 0015 LB (IS 0,8UFAD)
000007 00 00pou2 13 0000 LL *0
oooo08 o0 000003 BUFAD RES 10
000009 END

o0 00pols 0O o003

e P N)it

Explanation:

m Line 2 defines a form PTGF. Three fields are defined consisting of 12, 2, and 4
bits, respectively. '

m Line 3 defines a constant P = 07706.

m Line 4 references the PTGF form and generates a data word 0770662. The first
12 bits are built from P, the next 2 bits contain a 3, and the last 4 bits contain a
2. (Note that this is an example of a PTGS$ call line).

@ Line 5 defines a form IS. Two fields are defined consisting of 6 and 12 bits,
respectively. i

m Line 6 generates an LB instruction. The literal is defined to consist of a FORM
reference., The first 6 bits are zero; the last 12 bits contain the address BUFAD.
Since BUFAD is relocatable, the literal becomes 12-bit relocatable,

m Line 7 generates the code to load AL with the contents of BUFAD.

2.5. ODD DIRECTIVE

The ODD directive sets the currently active location counter so that the next symbolic
line is assembled at the next odd address. If the location counter is already positioned
at an odd address, no action is taken. The format is:

ODD

UP-7599
Rev. 1

SECTION:

UNIVAC 418-11l RTOS ASSEMBLER ‘

PAGE:

2.6. EVEN DIRECTIVE

The EVEN directive sets the currently active location counter so that the next

symbolic line of code is assembled at the next even address. If the location counter

is already positioned at an even address, no action is taken., The format is:

EVEN

2.7. CHAR DIRECTIVE

The CHAR directive permits selective redefinition of the values associated with alpha
constants or strings (see 1.4.1.5). Unless a CHAR directive is used, the assembler
uses the XS-3 code values defined in Table 1-1,~— 27~ 4 77+

(&Y R

The alphabetic character A, for example, has an XS-3 value of 024. By using the

CHAR directive, A may be redefined to have the value 6 (Fieldata). Unless redefined
by another CHAR directive, all subsequent alpha constants and strings use the value

of 6 for an A. The format of the CHAR directive is:

CHAR el’fl'eZ’fZ"“’en’fn

The specification field consists of a list of paired expressions e; and f;; e; specifies
which character is to be changed, and f; specifies the value to which the character
e; is to be changed. In order to identify which character is to be changed, its XS-3
value is specified in e;.

Example:
000001 /e
000002 CHAR AT 6B, 7,%CY,8
000003 00 0U00UD 060710 *ABC®
000004 CHAR 024,024,025,025,026,026
000005 00 000QU1 242526 *ABC?
000006 END

Explanation:

Line 2 redefines an ‘A (value 024) to 6, '‘B' (value 025) to 7, and 'C' (value 026)
to 8.

Line 3 generates the alpha constant 'ABC'. As a result of the CHAR directive in
line 1, the value 060710 is generated.

Line 4 resets the values associated with 'A', ‘B', and 'C' to 024, 025, and 026.
Note that the characters to be changed must be referenced through their octal
values because the alpha constants 'A', 'B', and 'C' have been redefined in line

2.

Line 5 generates the alpha constant '1ABC'. Line 4 results in a value of 0242526,

UP-7599 :
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

2.7.1. XCHAR Directive /

The XCHAR directive resets the values associated with alpha constants or strings
to the XS-3 code values defined in Table 1—1. The format of the XCHAR directive
is:

XCHAR

No label or operand field is present,

In the example in 2.7, the alpha constant value associated with ‘A, ‘B, and 'C"
could have been redefined to their XS-3 value by using the XCHAR directive.

2.8. INSERT DIRECTIVE

The INSERT directive provides a method to insert symbolic code from either the
user or the system library into the program which is currently being assembled. The
operand consists of one list of one expression specifying the symbolic name of the
program element to be inserted. The format is:

INSERT e

Insertion of symbolic code is terminated when the end-of-file sentinel following the
symbolic code in the library is detected. The symbolic element to be inserted may

consist of common subroutines, translating routines, translation tables, and so on.

The symbolic element to be inserted may itself have an INSERT directive.

2.9, UNLIST DIRECTIVE

The UNLIST directive provides a means of selectively preventing the printing of
output of sections of a program. The format is:

UNLIST

2.10. LIST DIRECTIVE

The LIST directive provides a means of conditionally resuming printing of a program
after using the UNLIST directive. The format is:

LIST e

The LIST directive may have an operand. If the value of the operand expression is
nonzero, printing resumes. If the value of the operand expression is zero, printing
is discontinued.

2.11, SKIP DIRECTIVE

The SKIP directive provides a means of controlling page formatting of the assembly.
The format is:

SKIP e

The SKIP directive may have an operand expression e. If present, e lines are skipped
before resuming the assembly print. If no operand field is specified, the paper is
advanced to the next page before printing is resumed.

UP-/59Y
Rev. 1

SECTION: PAGE:

UNIVAC 418-11l RTOS ASSEMBLER ‘

A page eject may also be accomplished by specifying a slash (/) in column 1 of
any comment card.

Example:

LABEL OPERATION OPERAND
1 10 20 30 40
/_L-l AU T S VA RO U U SN U N WO T WU S B S B0 O T B S SO W O B T D B S R T B O R N
o 1ISKIP & L PR R SUT S TN BTN W U WO
AU U U Y O O S WU BN T S Y B S G B I R N R A R S O B A e Lol

2.12. END DIRECTIVE

The END directive is used to indicate that the last line of symbolic code in a
procedure or in a program has been reached. The END directive may have an
operand consisting of one list of two expressions. The operand is used to indicate
the starting address and operating priority, respectively, of the assembled main
program. A blank operand field indicates the end of a subroutine or procedure. The
format is:

END eq,ey

When the END directive terminates a program assembly, all literals accumulated
during the course of the assembly are listed and generated,

2.13. GO DIRECTIVE

The GO directive, when not used within a procedure, directs the assembler to ignore
all statements until the associated NAME directive, not defined within a procedure,
is encountered. The NAME directive must be defined subsequent to the GO directive
(forward reference). If an END directive, not signifying the end of a procedure sample,
is encountered before the NAME directive, the assembly is terminated as though the
NAME directive immediately preceded the END ditective. The format of the GO di-
rective is:

GO label

where label represents the label of a NAME directive (see 3.12.2).
Example: See 2.14,

2.14. NAME DIRECTIVE

The NAME directive, when not defined within a procedure sample, is used to
signify a point in the assembly at which assembly of symbolic statements is to
be resumed after a GO directive. The format is:

label NAME

The label field contains a six-character label which may be referenced in the operand
field of the GO directive (see 3.12.1).

UP-7599

2
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER secTion: ohce:
Example:
0000014 /e
000002 000005 A EQU 5
000003 00 0000UD 70 0003 LLK 3
000004 DO A=5 , GO NEXT
000005 LLK 5
000006 NEXT NAME
000007 END
Explanation:

m Line 2 assigns a value of 5 to the label A.

m Line 4 uses a DO directive (see 2.15) which causes the statement GO NEXT to
be performed.

m Line 5 is ignored during the assembly because of the GO statement in line 4.

m Line 6 defines the label NEXT. Assembly of source code resumes starting
at the next statement,

2.15. DO DIRECTIVE

The DO directive is used to process a statement conditionally or to generate data
tables by processing a single statement more than once. The format of a DO line
is:

labell DO expression ,label2 operation operand
The comma divides the DO line into two parts:

the determinant: labell DO expression

the DO-item: label2 operation operand
The expression following the DO directive determines how many times the DO-item
is performed. Labell is optional; if used, labell serves as a counter reference

reflecting the current number of times the DO-item has been executed.

The DO-item may be any symbolic line of coding., The DO-item may contain another
DO directive.

Example of a simple DO:

' /o
000001
000002 00 00pooo 000001 A DO 5 » %A

00 000001 ooopooz
00 oudgooz 000003
00 0000UL3 000004
o0 oCoou4 000005

N
000003 ENo

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER 2

SECTION: PAGE:

10

Explanation:
m The DO-item generates a data word +A.
® The DO-item is performed 5 times.

m Each time the value of A is incremented by 1. The first time that the DO-item is
performed, the value of A is 1.

All symbols appearing in the determinant expression must be defined prior to the
DO statement. If undefined symbols appear, their value will be taken as 0. If the
determinant expression has a negative value, it is reset to 0 and the DO-item is
not performed.

2.15.1. Conditional DO

The operators <, =, and > are relational operators and generate expressions with
a value of 0 (false) or 1 (true). Whenever the determinant expression of a DO state
ment has a value of 0 or 1, the DO is said to be conditional. If the determinant
expression value is 0, the DO-item is not performed. If the determinant expression
value is 1, the DO-item is performed.

Example:
LABEL OPERATION OPERAND
1 10 20 30 40
A T R DR RN NS D R § L”1;>§Z” LML<1QL;?S?J7FTF7f7z)| Lt n\-ﬁ!ﬁ‘a !CI:Q‘QL”; dodoo bl b 1.1
TSR U O U VAU A0S AU TN N T OO U TR 0 TV T DU U N0 SO0 YO WY VAU ST W0 S SO DU U SNN NN TUOE SO W O SO TN ENT I S N SO N
Explanation:

m If the current location counter value is greater than 07777, the determinant
expression has a value of 1. As a result, the LSR 020 instruction is generated.

2.15.2. Nesting of DO Directives

As stated previously, the DO-item may itself be the determinant of a second
DO directive. DO statements may therefore be nested to as many levels as desired.

As the final DO-item is performed, the repeat count of the innermost determinant
is satisfied before processing of the next determinant resumes.

Example:

oooucol /e
ocoooz 00 0UpooO ooooti f DO 3 »y DO 2 , ¢Beley
00 000001 0ooo12
ov oUpono2 cooo2g
00 000002 oooo22
00 oVUoooy ao00031
00 OCopos ogoo32
000003 END

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

UP-7599 _ ‘

N

Explanation:

m The DO-item +8 *I+] is generated a total of 6 times. The value I is varied from
1 to 3. For each value of I, the DO-item is performed twice. The resultant data
words generated are +011, +012, +021, +022, +031, +032.

2.16. LIT DIRECTIVE

The LIT directive is used to define a literal table under control of the active location
counter. The format of a LIT statement is:

label LIT e

The label is optional and identifies the name of the literal table. The operand expres-
sion e is optional and determines the relative starting address of the literal table.

Through the use of the LIT directive, a number of separate literal tables can be
created. Duplicate literals are eliminated within each unique literal table; however,
duplicate literals may exist in separate literal tables. In the absence of a LIT
directive, all literals are placed in the literal table under location counter zero. The
entries in the label field of a LIT directive comply with the labeling rules as applied
with the location counter declaration and label structure. However, the label may not
be subscripted or suffixed by an asterisk nor may it be referenced (addresses or para-
forms). :

A LIT directive may have a label. If a label is present, the literal table is identified
by this label. Literals generated under a labeled literal table have the form:

label(literal)

The label refers to the literal-table name, and literal represents the literal expression.

Example:
LABEL OPERATION OPERAND
10 20 30 40
..‘BIBITJAIBI | S [LII?_Lrl P TR TN VR U0 U 00 NN Y O VO N W TN SO YUY TSN YO0 N T NN SO GO OO B S
(S S Y U RN UV NN S S| llw-)l\'m b [LLBiTxAIBI ‘ 1(,] ILJLJ...KJ L‘ .1); FARNOY RN TR ST WO AN WU TR DU W SR |
T S N N U U T 0 VO O U0 U VAN T W TN VOO O U U 0 VOO WO U T O VO SN N N U B SO OGS S W

If the label field of the LIT directive is left blank, literals to be placed in the defined
table have the form:

(literal)
Example:
LABEL OPERATION OPERAND
10 20 30 40
QLLI_.I_L)_L Lol bl l\-JyT! P U T U U N O YOO U T N N U N U N VOO VAN TS U N NN O DU VOO T BHOG UO O
R R R R | 0 S SR 1.41(.1,, LLK . ‘J)I ST U U N WU T SO ST U SO U EN S NS SO HNS S

Il'lli,mlll[lillllllll,l&lI)llll{ILll,(lllLi1llLl‘l

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER 2

SECTION: PAGE:

12

Unless an operand field is present in the LIT statement, the literal table is generated
under the location counter active at the time that the LIT directive occurred.

If an operand expression is present in the LIT statement, the literal table is generated
starting at the address specified in the operand field of the LIT statement. The location
counter of the specified starting address is used.

Literals are generated only in the second assembly pass. As a result, some care
must be taken in defining the LIT directive. If the operand field specifies the

literal table start address, only those literals subsequently defined for that literal

table are assigned in the specified area.

Example:

000001 /e
oogona2 00 ovoouo 12 o022 LL)
000003 TABI LIy
000004 00 00Gou1 12 0023 L TABI(1)
000005 $(2),TAB2 LI AREA2Z
00unDé 00 OUoouz 12 QOO s(0) - L TAB2(2)
000007 00 0UQOO3 10 0024 LA (1.0)

00 0U0OoUY 12 o025
000008 s(1) LT
o0poo09 00 0Upoos 12 0012 $(0) L (7)
000010 LT AREAI
000011 00 OUOOUs 12 0012 LL (7
000012 oo 000D07 12 0OOO LL (10}
000013 01 0UGOOD S{1),AREAL RES 10
00001 4 00 000010 $(0),AREA2 RES 10
000015 END

00 oYonz2 00000

00 0U0D23 0000O}

00 00001G 000002

00 0UDD24 201400

D0 0UGD25 0DO0OOO

01 0Uoo12 000007

o1 oloooo oopoi2

Explanation:

m Line 2 generates a literal constant 1 under location counter 0.

@ Line 3 defines a literal table TAB1 under location counter 0.

m Line 4 generates another literal constant 1, but different from that generated by
line 2 because different literal tables are used.

m Line 5 defines a literal table TAB2 starting at address AREA2 under location
counter O (see line 14). The location counter specification is not used and is
superfluous.

m Line 6 generates a literal constant 2 at AREA2,

® Line 7 generates a literal constant 1,0 (2 words) under location counter O.

® Line 8 uses a lit directive to generate further literals of the type (LITERAL)

under location counter 1.

UP-7599
Rev. 1

2

SECTION:

UNIVAC 418-111 RTOS ASSEMBLER l

PAGE:

13

2.17.

Line 9 generates a literal constant 7 under location counter 1.

Line 10 defines literal table AREA1 under location counter 1 (see line 13).

Line 11 refers to the same literal as line 7. Because the literal was defined
previous to the LIT in line 10, it is generated at the end of location counter 1.

Line 12 generates a literal constant 10 at AREAL,

Line 13 and 14 reserve 10 words each for the literal tables AREA1 and AREAZ2.

INFO DIRECTIVE

The INFO directive provides a means of organizing coding assembled under various
location counters into certain system-defined groups. There are six possible groups
into which part or all of a program may be divided:

g K W NN = O

bay-dependent
bay-independent

drum

FASTRAND mass storage
common, bay-independent

common, bay-dependent

Group 0 — bay-dependent

Group 0 consists of relocatable object code (instructions and/or constants)
written in such a way that it can be relocated anywhere within a bay starting

at an even address. If a program of this category exceeds 4096 words (one bay),
loading and/or relocation of that program starts automatically at the beginning
of a bay. If the size of the location counter is less than 4096 words, all words
are allocated within one bay. Since group 0 is the most commonly used re-
location mode, it is the assumed group in the absence of an INFO directive for
any location counter.

Group 1 — bay-independent

Group 1 consists of relocatable object code (mostly constants and some instruc-

tions) written in such a way that it can be allocated any available storage location

regardless of bay boundaries.

Group 2 — drum

This group is used to reserve drum area in 512 18-bit word increments at assembly

time and to convey this information to the job loader. It eliminates the need for
writing supervisor calls for drum buffer requests and has the added advantage of
being processed by the job loader prior to loading the program. If for any reason
sufficient drum area is not available, the program is not loaded until sufficient
drum space becomes available. Drum space is allocated in such a way that the
requested area under each location counter is contiguous unless part of the space
is already allocated through an @ASG control card. Location counters of this type
may not be used to generate relocatable object code,

In referencing the drum space allocated through the INFO directive, the location
counter is used by the loader as the logical file number. If multiple elements
within a single program reserve drum space in this manner, the space is allocated
only once for the largest requested area for each location counter (file number).

UP-7599 ‘
Rev. 1 UNIVAC 41811l RTOS ASSEMBLER 2

SECTION: PAGE:

Group 3 — FASTRAND mass storage

Logically, the purpose of this group is the same as that of group 2. Hardware
characteristics, however, dictate that FASTRAND allocation is kept separate
from drum allocation. A FASTRAND increment is 3584 18-bit words or 1 track.

m Group 4 — common, bay-independent

This group is simply an extension of group 1, the bay-independent group. It

allows separately assembled routines to share storage areas by using the same
label in the INFO directives for this group. This capability is provided by the

job loader which allocates storage only once for all the references of this label

in the routines to be loaded for a program. The length of the storage area is
chosen by the job loader to be equal to the longest of the location counter lengths.

Group 5 — common, bay-dependent

This is an extension of group 0, the bay-dependent group. It allows separately
assembled routines to share storage area by using the same label in the INFO
directive for this group. This capability is provided by the job loader which
allocates storage only once for all the references of this label in the routines
to be loaded for a program. The length of the storage area is chosen by the job
loader to be equal to the longest of the location counter lengths.

The symbolic format of the INFO directive is:

label INFO g Il’IQ'In

where label is an optional symbolic label which is only meaningful to the job
loader. In the case of groups 4 and 5, the label is the common block name., Labels
are allowed for groups 0, 1, 2, and 3. The operand field consists of two lists of
expressions. The first list represents one of the six group numbers and may consist
of one expression only., The second list may consist of one or more expressions,
each defining one of the specific location counters assigned to that group.

The assembler allows a maximum of 16 INFO statements which are collected and
passed to the job loader.

Example:
000004 /s
000002 COMMON INFO 4 1.8
000003 s(1)
000004 ol ovoooo INTABL RES 500
000005 o8 00couo S(B),TAPE) RES 512
000006 08 00300p TAPE2 RES 512
000007 o8 0020u0 TAPED RES 1024
oopops8 08 0U4000 DRBUF e RES 256
auopoo® o8 0U44gp ARRAY® RES 1000
000010 INFO 2 6
ooootl 06 0UOOO0OD $(6)yDBUF RES 1000//512
oooo0i2 o6 0000O2 pBUF2 RES 2000//512
000013 $(0)
000014 END
se® SUMMARY ewe
PROGRAM SIZE: 0} 90764 06 00006 08 04350

EXTERNAL DEFINITIONS: DRBUF ARRAY

UP-7599
Rev. 1

SECTION:

UNIVAC 418-111 RTOS ASSEMBLER I

PAGE:

15

2.18.

Explanation:

m Line 2 specifies that the code generated under location counters 1 and 8 is to
be considered as bay-independent common storage (group 4). The common area
is identified by the name COMMON.

m Lines 3 through 9 define various buffers in the common area.

m Lines 10, 11, and 12 specify that six blocks of drum space are to be allocated.
The label DBUF refers to the drum address of the first block of this drum area.
The label DBUF2 refers to the drum address of the third block of this drum area.

ASM DIRECTIVE
The ASM directive is not an assembler directive; it is a library procedure. The
procedure may be used to generate a series of data words (or instructions) in one
statement. The format is:
label ASM €1,€9,€3,.44,€p
The label, if present, refers to the first data word generated, el.'Fhe operand consists
of a series of expressions e; each of which is generated as one or more data words.
Example:
000001 /e
000002 00 0UDOUD 000UO1 ASM h,2,%(LLK 1)e+LABEL,*ABCD?
00 00poot 000002
00 000Dp2 70 oo0ol
v 00 000003 000000
00 000004 242526
0o o0goos 270000
000003 END
s SUMMARY swe
PROGRAM SIZE? 0o Oooues
EXTERNAL OR UNDEFINED REFERENCESS LABEL

Explanation:

The code generated by the ASM procedure call is equivalent to the series of state-
ments:

+1

+2

LLK 1
+LABEL
‘ABCD'

The ASM procedure is illustrated in 3.7.2.

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 3

SECTION: PAGE:

3. PROCEDURES

3.1. GENERAL

Often a program requires repetitive sequences of coding. These sequences are not
necessarily identical but there is enough similarity to make the writing of these
sequences mechanical. The procedure is a method employed by the assembler which
permits the automatic generation and modification of repetitive coding sequences. A
procedure may be generated any number of times with different parameters supplied
each time it is referenced. Procedures are implemented by the PROC directive. The
source code between the PROC and END directives is commonly referred to as the
procedure sample. The PROC directive uses procedure samples to generate the

required coding. As the assembler encounters each procedure sample, it stores the
procedure and the procedure’s entry points. When a call to the procedure is encountered,
the assembler references the procedure entry point table, locates the procedure, and
then generates the required coding. The procedure sample must physically precede

any call to it in the main program unless it is defined in the library as a PROC element.

3.2. PROCEDURE MODES

Procedures can be developed in any of three modes: simple, generative, or interpretive.
The differences between simple, generative, and interpretive procedures are functional
differences only, not intrinsic in the manner in which the assembler analyzes them.
Many procedures are actually combinations of all of them.

3.2.1. Simple Mode

The simple mode occurs when the object procedure developed is equivalent to the
object procedure declared. In this mode, the procedure is used essentially to provide
program legibility and avoid repetition of code. An example of a simple mode pro-
cedure is given in 3.7.3,

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER 3

SECTION: PAGE:

3.2.2.

3.2.3.

3.3.

3.4.

Generative Mode

The generative mode occurs if the object procedure developed is a multiple of the
object procedure defined. By combining the DO directive and a simple mode pro-
cedure, the same code may be generated a number of times. An example of a genera-
tive procedure is given in 3.7.2,

Interpretive Mode

The interpretive mode occurs when the object procedure determines which code is
to be generated, based on the parameters supplied when the procedure is called.
In this mode, the PROC body provides the algorithms to be used for the generation
of code. Examples of interpretive procedures are given in 3.7.4, 3.7.5, and 3.7.6.

PROCEDURE SAMPLE

A procedure sample consists of a group of statements having a PROC and an END
directive as delimiters. The procedure sample is stored by the assembler so that it
may be scanned when the procedure is called upon as a result of the occurrence of
one of its entry points in the function field. The procedure sample is scanned at
least once for each time it is called upon.

PROC DIRECTIVE
The format of the PROC directive is as follows:

label PROC operand

The label field contains any label not exceeding six characters. The label identifies
the specific PROC and is one of the means by which the procedure may be referenced.

The operation field contains the PROC directive. This directive signals the assembler
that sample coding of the procedure is to follow.

The operand field may contain zero, one, or two subfields (separated by commas).
Subfield 1 contains a value specifying the maximum number of fields appearing on
that procedure’s call line.

Subfield 2 of the operand field cannot be written unless a value appears in subfield
1. The value entered in subfield 2 indicates the number of words of code to be
generated when the sample is referenced. Subfield 2 must be omitted in the following
situations:

m if the procedure can generate a variable number of words;
m if forward references are made in the procedure;
m if external definitions are made in the procedure;

m when a label on a procedure reference line is to be assigned to a line other than
the first line of the procedure;

m when a procedure call is present in the procedure which causes the assembler to
bring the second procedure from the library into the procedure storage area.

Except for the foregoing conditions, subfield 2 should be used because it eliminates
two subassembly passes of the procedure sample, thereby shortening assembly time.

UP-7599
Rev. 1 UNIVAC 418.111 RTOS ASSEMBLER 3

SECTION: PAGE:

A line terminator (6.5) must precede any comments on the PROC directive line.

Example:
LABEL OPERATION OPERAND
10 20 30 40
.CIJIMIP(A|RL Lol [PlRlalc! RSN 5 YF Y0 Lo U S SO VO U N NN VO N ST HN T W N S K Y W SO A B
MIGME; Lol 11t lPlRi61Cx T T T T U VO YO VOO YUK N TONT T N T HUN NS VO VU VO WY M HN U N WO T G S
T N T U T U U U VU T VO YOO U T U OO VT N O U U O T O W B
Explanation:

m Line 1 contains the label COMPAR. Subfield 1 of the operand specifies that one
field may appear on the reference line. Subfield 2 indicates that ten words are
generated by the procedure.

m Line 2 has no operand field.

3.5. END DIRECTIVE

The END directive must appear at the end of each procedure. END is coded in the
operation field. The label and operand fields are left blank.

Example:
LABEL OPERATION OPERAND
10 20 30 40

LIQIAIDI*I Lol i & IPIRIUICI | SOV TN SN S | lol.’l‘l Levdoobnde b d i | ISR U OO WO S | R N | 1 I S VUVREN (SN SN DA S B
SR R R RN | I ST S S A IT’1AJGJ ol e
LG Ll END e e b
1 T U T N N U0 W VO HN VO TNN VOO NN N0 N TS N TN R UU U TN TN U VOO ISUUS UONN T WO WO AU OO U U N SO IO DO W

Explanation:

m Lines 1, 2, and 3 define the procedure sample.

m Line 1 specifies that no parameters are supplied on the call line, that one word
is to be generated whenever the procedure is called, and that the entry point to
the procedure is LOAD.

@ Line 2 contains the instruction LL TAG which is to be generated each time the
PROC is called.

m Line 3 specifies the end of the procedure sample.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER 3

SECTION: PAGE:

3.6.

PROCEDURE REFERENCE

When a procedure reference is encountered at assembly time, the specified procedure
sample is analyzed. If the procedure sample is contained within the assembled program,
it must be defined prior to the first reference. If the procedure sample is defined in a
procedure element in the user or system library, the entire PROC element will be
included in the assembler PROC storage area when a call on any one of its procedures
is made. In searching the libraries for a procedure entry point, the user library is
searched first. Since the entire procedure element is inserted by a reference on one

of its PROCs, care must be taken that no duplication of procedure entry points occurs
when multiple PROC elements are inserted. To reference a procedure, a call line is
used.

3.6.1, Definition of a Procedure Call Line

A procedure call line informs the assembler that generation and modification of a
code sequence are to begin at this point, The operation field contains the external
label of the procedure desired. The operand field contains the expressions (para-
meters) needed for modification. The format of a call line is:

label procedure label operand

The label field of a call line is optional.

The operation field contains the entry point of the desired procedure,

The operand field contains the parameters needed to modify the procedure.
A period should be used to terminate the call line.

Example:

LABEL OPERATION OPERAND
10 20 30 40

1

ngnLLLr‘l,i,JJ,LLSLP;Ecx1‘;:141:1:,11 T T e S N T S A
AlDipl.Pl Lot 1[A1D‘D2121 Lo J“u;TsAti T lqiqu:P,Juig S T T S T S N S DO B S

JLll..lm,llL,LquDlll,li1]il);ll,.l!lliil4ll,Alv;,,.ii,l

[N S S D S

L l,,,l_J,,.i,,l | HERE VS S USRS TS USY ADUI I CUUIN (NN SN S BO B EI U SO T SYRN-UUNS NN SRR SN S SU WS S SRR |

Explanation:
m Line 1 has no label and the procedure LOAD will be generated.
@ Line 2 contains the label, CALL1. The procedure referenced is SPEC.

® Line 3 contains the label ADDP, The procedure ADD22 is referenced. The
operand field contains four parameters. The parameters supplied are grouped
into two fields with two subfields each.

UP-7599
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

3.6.2. The.Operand Field of a Call Line

The operand field of a call line may contain parameters used to modify values
appearing within a procedure. The parameters appear in fields and subfields of
the operand. There may be any number of fields, and any number of subfields may

appear within the fields. Fields are separated by blanks; subfields are separated
by commas.

Subfieldy (1,1)

FIELD, 1) Subfieldy (1,2)

Subfield, (1,n)

Subfieldy (2,1)

FIELD, (2) Subfieldy (2,2)

OPERAND OF A Subfield, (2,n)

CALL LINE
Subfield; (3,1)
FIELD:} (3) Subfield2 (3,2)
Subfield,, (3,n)
Subfieldy (j,1)
FIELD, G) Subfieldy (j,2)
Subfield, (j,n)
Example:
LABEL OPERATION OPERAND
10 20 30 40
RS B RSN B L Y. YR R R SR jbx,p!’h,15.1‘,-”1]'1....1,, JIM, INST, L WLR LS8, T
,,L,}A.{,Illlll!IXiJlliliillLlli-)!ll;li..i,nk,,)).,l;:.-k..liA,l

Spaces separate fields; commas separate subfields.

Explanation:
m Field 1 contains subfields 6, 4, SLT.
m Field 2 contains subfields JIM, INST.

m Field 3 contains subfields W, R, S, T.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER 3

SECTION:

PAGE:

3.7.

3.7.1.

PARAFORMS

The parameter reference form, commonly called the paraform, provides a means for
selectively referring to the operand parameters of a procedure call line. Paraforms
are implicitly defined by the operand field parameters of the procedure call line.
They are used in the operand field of a line of symbolic coding within the procedure

sample. Paraforms are only defined during the processing of the procedure call line
and the referenced procedure sample,

A paraform is identified by the name of the procedure reference. There are six syn-

tactical paraform structures which denote different values associated with the operand
field parameters of the procedure call line.

Referencing the Number of Fields

When the procedure name is used in the operand field of a symbolic line within the

procedure sample, it is equated to a constant equal to the number of fields in the
call line.

Example:
/l
oogvol
000002 CALLLs PROC .
000003 1 DO CALLI , RES)
000004 END
000005 .
Oggngb " 4ne CALL NAME
7 .
ggggge 00 00gpo0o caLLl FIRST SECND THR{
00 00p0G|
00 000002
000009 00 000003 000001 FIRST .l
000010 oo 000004 000002 SECND +2
o000 00 0UD0DOs 000003 THRD «3
600012 END
Explanation:

m Lines 2 and 4 define the procedure CALL1.
m Line 3 reserves one word CALLI times.

B Line 8 calls procedure CALL1 with three fields, FIRST, SECND, and THRD.
As a result the paraform reference CALL1 in line 2 is assigned the value 3
and three words are reserved.

UP-7599

3
Rev. 1 UNIVAC 418-lIl RTOS ASSEMBLER sEcTiON: o AGE:
Example:
00uool ,e
000002 . ADDe PROC .
000003 LL ADDIL 1)
000004 AL ADD(1,2)
000005 DO ADD=2 , SL ADD(2,1}
000006 END
eo6007 .
goooos . von CALL NAME
000009 .
000010 o0 oloooo 12 0003 ADD AeB 4

00 00po0!L 14 0004
00 000002 44 pOOS

0000114 00 000003 000001 A +l

000012 00 000004 000002 B +2

000013 00 000005 000003 c +3

000014 END
Explanation:

m Lines 2 through 6 define the procedure ADD.
m Lines 3 and 4 define a simple addition.

m Line 5 contains a conditional DO statement. The condition is dependent on the
number of fields in the call line, in this case two.

m Line 10 is the call line consisting of two fields.

3.7.2. Referencing the Number of Subfields

The paraform pn (a), where pn denotes the procedure name and (a) is an expression
which represents the ath field on the procedure call line, refers to the number of
subfields present in the ath field.

Example:

0000014 /o

000002 ASMe PROC o

000003 1 DO ASMUL) s *ASMil,I)
000004 END

000005 °

000006 o ses CALL NAME

000007 .

00po008 oo 090000 000OGL ASH 192,04

00 00g001 oopoo2
00 00p0G2 000004
000009 END

UP-7599
Rev. 1

UNIVAC 418-Il1l RTOS ASSEMBLER

SECTION: PAGE:

3.7.3.

Explanation:

m Lines 2 and 4 define the procedure ASM.

w Line 3 performs the operation +ASM(1,I), ASM(1) times.

® Line 8 calls the procedure ASM and specifies one field with three subfields
1, 2, and 4. As a result the paraform ASM(1) is assigned the value 3, and the
operation +ASM(1,I) is performed three times. The code generated as a result

of the ASM call will therefore be three data words:

+1
+2
+4

Referencing the Procedure Call Parameters

In order to reference any of the supplied procedure parameters, the specific para-
meter is identified by specifying the procedure name immediately followed by a
pair of parentheses. Enclosed within the parentheses are two values separated by
a comma. The first value denotes the specific field in the call line; the second
value denotes the specific subfield within the specified field in the call line.

Example:

00g001
oopopa2
000003
oooooY
000005
000006
000007
000008
000009
000010

000011
000012
000013
00001t4

Explanation:

m Lines 2 and 6 define the procedure ADD.

o0
oo
oo
oo
[:11]
0o

oUpooo
00p001
odpou2
00p003
o0ooo4
00p00s

12 voo3d
14 poo4
44 0005
000001
000002
000003

/o
ADDw

. e

ONE
TWO
THREE

PROC
LL
AL
SL
END

CALL NAME
ADD

+1

+2

+3
END

1,3

ADD(1,1)
ADD(L,2)
ADD(1,3)

ONE«TWO, THREE

@ Lines 3, 4, and 5 generate a load, add, store set of instructions to perform the

operation C = A+B. The addresses of A, B, and C are specified as subfields
1, 2, and 3 of field 1.

m Line 10 calls upon the procedure ADD to generate the code which performs the
operation (ONE)+(TWO)->THREE.

UP-7599
Rev. 1 UNIVAC 418-11I1'RTOS ASSEMBLER

SECTION: PAGE:

3.7.4. Referencing the Asterisk in a Procedure Parameter

Because of the use of the asterisk to indicate the index mode in normal instructions,
the presence or absence of an asterisk in the procedure call parameter may be checked
by using the paraform structure pn(a,*b), where pn denotes the procedure name, and

a and b are expressions representing the field and subfield numbers respectively.

If the specified parameter, pn(a,b), is preceded by an asterisk, the paraform pn(a,*b)
is assigned a value 1;otherwise, 0.

Example:
000001 /e
oopo002 L PROC 1}
oouoo3 MOVE® NAME
000004 Do LEla®l) » LU LG 1)
ooooos Do LUlse2) » LL L(142)
coovoneé BT Ltl143)
oopoo7 END
ooovose .
ooooo9 . wue CALL EXAMPLE
0000140 .
oouo1d 00 OUgooo 10 0036 MOVE S(FROM) ,*(T0),12
00 00po01 12 0037
00 oUgooz 5070 14
000012 00 000003 10 0036 L (FROM)
000013 00 0UDoODs t2 0037 LL (1o0)
o004 00 oUoous 5070 1% MOVE 040412
oouols 00 oUpoOs FROM RES 12
0oool1é 00 0Pp0z2 To RES 12
oowo17? END
00 0UDD36 000006
00 00poay oooo22
Explanation:

m Lines 2 and 7 define the procedure L.
® Line 3 defines MOVE as an entry point to the procedure.

m Lines 4 and 5 generate the instructions LU L(1,1) and LL L(1,2) if the first
and second subfields of the first field of the parameters on the call line are
preceded by an asterisk.

m Line 11 calls on procedure L by way of the entry point MOVE, Since asterisks
occur in the first two subfields, an LU (FROM) and LL (TO) are generated.

m Line 14 calls on the MOVE procedure. Since no asterisk occurs on the first
two parameters, the LU and LL are not generated.

UP-7599 .
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 3 10
SECTION: PAGE:
Example:
000001 L PROC 1h2 o
000002 LAe® NAME
000003 1 FORM 6412
00UDGA 1 0l0eL(1s01)4ktl,1)
000005 1 012¢L(1e®1) s tl, 1))
000006 END
000007 " 00 OUpoou 10 000U LA TAG
u go 00pou: 12 nool
000Gos v 00 OUDOuz 11 0000 LA “TAG
v 00 0Upog3 13 oo0l
000009 END
Explanation:
m Lines 1 and 6 define procedure L.
m Line 2 defines an entry point LA, (See 3.6.2).
m Lines 4 and 5 generate:
(1) lower 12 bits equal to the supplied first parameter
(2) upper 6 bits 010 (LU) and 012 (LL) if no asterisk precedes the first para-
meter
(3) upper 6 bits 011 (LU*) and 013 (LL*) if an asterisk precedes the parameter
m Line 7 causes the following instructions to be generated:
LU TAG
LL TAG+1
m Line 8 causes the following instructions to be generated:

LU *TAG
LL. *TAG+!1

UP-7599
Rev. 1

UNIVAC 418-1il RTOS ASSEMBLER

3

SECTION:

11

3.7.5. Referencing the NAME Directive Operand Value

The NAME directive may define a procedure entry point (see 2.14). The paraform
pn(0,0), where pn denotes the procedure name, refers to the value in the operand
field of the NAME directive by which the procedure was called upon. If the pro-
cedure call is to the procedure name itself, pn(0,0) has a value of 0.

Example:

nooool

000002

000003

0oouD4

pDooo0sS

000006

000007

oopoge

0pp009

000010

oogotd

000012

Qooo13 00
0o
[s]2]

000014 00
oo
00

00015 0o

0O0C16 oo

000017 00

ooopoie 00

000019 00

000020 0o

ooco2}

Explanation:

8 Lines 2 and 9 define the procedure L.

olooun
otoool
0dgo02
00po0a
o0poo4
o0onos
000006
otoooy
olooio
0Cpo1y
oloo12
ovoo13

12 0006
15 voo?
44 0010
12 oo1!
16 0012
44 0013
000001
000002
ooooo3
000004
DD000%
000006

/e

ADD»
SuBe

YY)

ONE
WO
THREE

PROC 143

NAME 014 .
NAME 016 D
FORM 6412

I 012+L (1 *)), Ltl,1)

1 LEOs0)+L(Lo®2) ol (1,y2)
1 DU4¢LE1,%3) L0, 3
END

CALL NAME

ADD ONE»*TWOs THREE

sup AsBoC

+1

.2

+3

+4

+5

+é

END

m Lines 3 and 4 provide the entry points ADD and SUB. (Note that L is not an
entry point to the procedure since no asterisk is appended to the label.) If the
procedure is called upon through the entry point ADD, the value of L(0,0) is
014; if called upon by way of the entry point SUB, L(0,0) is 016.

@ Lines 6, 7, and 8 generate the instructions:

LL or LL*

AL,ANL or AL*,ANL*, and

SL or SL*, respectively.

The indexed function codes a:e used if an asterisk precedes the appropriate
paraform expression. Depending on whether the ADD or SUB entry point is used,

the AL or ANL function che is used.

PAGE:

*ALY FCNe CDE
*ANL' FCN. CDE

UP-7599 '

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER ceerion, 2 reg, 12
m Line 13 calls on procedure L through the entry point ADD. As a result, the code
generated is:

LL ONE

AL *TWO

SL. THREE
® Line 14 calls on procedure L through the entry point SUB. As a result, the

generated code is:

LL A

ANL B

SL C

3.7.6. Referencing Subfields of the oth Field
The paraform pn(0,b), where pn represents the grocedure name, may be used to
denote the bth subfield of the Oth field. The 0P field is defined on the procedure
call immediately following the procedure call name and separated by a comma.
Example:
000001 /e
000002 L PROC 1
000003 ADDe NAME 014
000004 suBe NAME 018
00000% 1 FORM 6412
000006 DO Li0,1120 » 1 O12+LClowldyLlls1)
000007 1 LEDsO)*LiLa®2)aLi1,2)
oguoos DO L(0)=2 4 I O44+L(1se3)sL(1+3)
000009 END
000010 .
oooB1l « Saw CALL NAME
000012 .
000013 00 000DV 14 0ODOD6 ADD AsBiroC
00001 % o0 000001 12 0OO5 sugyl AvBoeC
00 000002 16 0O0CG6
00001S 00 000003 14 0006 ADD4 O, AvBosC
00 000004 45 0007

000016 00 000005 00000 A 1
000017 00 000006 000002 B +2
000018 po 000007 000003 c)
000019 END
Explanation:

® Lines 2 and 9 define the procedure L.
m Lines 3 and 4 provide the entry points ADD and SUB.

m Line 6 generates an LL or LL* instruction if the first subfield of the oth field
is present and greater than zero.

® Line 7 generates the instruction AL or ANL, depending on the entry point used.

@ Line 8 generates an SL or SL* instruction if the second subfield of the oth field
is present.

B Line 13 generates the code:

AL B

(Note that subfields L(1,1) and L(1,3) are present but superfluous).

UP-7599
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

m Line 14 generates the code:

LL A
ANL B

(Note that the subfield L(1,3) is superfluous.)

m Line 15 generates the code:

AL B
SL *C

(Note that even though subfield L.(1,1) must be present, no actual expression 1s
needed. A zero would suffice to define the subfield).

3.7.7. Summary of Paraforms
Paraform constructions are summarized as follows (pn denotes procedure name):

pn When the procedure name is written with no specified field or subfield,
the value of the paraform is a constant equal to the number of fields in
the call line. (The operation field is not included as part of the count.)

pn(a) The value of pn(a) is a constant equal to the number of subfields in the
specified (a) field.

pn(a,b) The value of pn(a,b) is the parameter appearing in the subfield of field a.

pn(a,*b) The value of pn(a,*b) is a constant equal to 1 or 0, depending on whether
the parameter in the bth subfield of the ath field is preceded by an asterisk.

pn(0,0) The paraform pn(0,0) has a value equal to that specified in the operand
field of the NAME directive used for the procedure call entry point. If the
entry point is the procedure name itself, pn(0,0) has a constant value
equal to 0.

pn(0,b) The paraform pn(0,b) has a value equal to the parameter in the bth subfield
of the 0N field. The 0P field is considered to be the operation field.

3.8. NESTING OF PROCEDURES

When encountering a procedure call, the assembler temporarily discontinues the
current assembly and begins a subassembly of the procedure sample. Upon encounter-
ing the END directive, the original assembly is resumed. While processing the pro-
cedure sample, another procedure call may be encountered, resulting in the temporary
suspension of the first procedure and the processing of the second. This process
‘may continue up to 15 levels of procedures and is referred to as the nesting of
procedures, Each time a subassembly of a procedure is entered, all labels within

the procedure are defined for that procedure only. All labels and paraforms defined

in all preceding assemblies are also available to the subassembly, When the main
assembly is resumed, all labels defined within the subassembly are erased.

The nesting of procedures, therefore, enables the programmer to use the same label
in different procedures. Nesting allows simpler block-building techniques but requires
longer assembly time,

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER

3

SECTION: PAGE:

14

3.8.1.

When practical, the depth of nesting should be limited. Use of the distributed NAME
and GO directives may be helpful in restricting levels of nesting (see 2.13 and 2.14).

Physical Nesting

Physical nesting occurs when a procedure is physically located within the bounds

of another procedure. If a procedure is physically contained within another procedure,
the internal procedure is considered to be defined at one level higher than the
external procedure. Procedures may be nested to 15 levels. Therefore, the physical
location of the procedure sample determines at which level the procedure can be

accessed.

Physical nesting of procedures may be used to prevent certain procedures from

being referenced unconditionally,

Example:

START MAIN PROGRAM Level 0
Start AB Procedure Level 1
Start XY Prbcedure Level 2
Start CD Procedure Level 3
END
Start WZ Procedure Level 3

END

END

END .

END

Explanation:

Procedures CD and WZ are nested within the XY procedure and the XY procedure

is nested within the AB procedure.

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

UP-7599 |

3.8.2. Levels of Procedures

When procedures are nested, they are considered to have various levels of hierarchy.
The main program is considered level 0. A procedure called upon at level 0 is
assembled at level 1. Its entry point must therefore be defined to be accessible to
level 0. A procedure called upon within a level 1 procedure is assembled at level

2. In other words, each time a new subassembly is started the level is increased

by 1, and decreased as the procedure subassembly is completed.

The level of a procedure entry point determines where the procedure may be refer-
enced. If the level of the procedure entry point is equal to or less than the level

of the subassembly, it is accessible to that subassembly, and the procedure may
be referenced. If the level of the procedure entry point is greater than the level of
the subassembly, the procedure may not be referenced from within the subassembly.

The level of a procedure entry point is determined by combining the level at which
the procedure sample is defined and the number of asterisks appended to the label
of the entry point. Each asterisk appended to the label of the procedure entry point
makes the label accessible for reference at a level one lower than the level at
which the procedure sample is defined.

Example:
P1* PROC Entry point at level 0
Level 1 procedure
P2 PROC Entry point at level 2
Level 2 procedure
— P 3 ¥K PROC Entry point at level 0
Level 3 procedure
—_— END
— P4** PROC Entry point at level 1
Level 3 procedure
e END
e END
END

Level 0 code

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 3

SECTION:

PAGE:

16

Explanation:

m Entry point P1 is accessible to level 0. Procedure P1 may be called from any-
where in the program.

8 Entry point P2 is accessible to level 2. Procedure P2 may be called only from
within a second or higher level procedure.

@ Entry point P3 is accessible to level 0. Procedure P3 may be called from any-
where in the program.

® Entry point P4 is accessible to level 1. Procedure P4 may be called from within
a first or higher level procedure only.

Example:
1 P1* PROC Entry point at level 0
Level 1 procedure
2 P3 Call at level 1
3 P2 PROC Entry point at level 2
Level 2 procedure
4 P4 Call at level 3
5 P 3%k PROC Entry point at level 0
Level 3 procedure
6 P2 Call at level 2
7 END
8 P4 %% PROC Entry point at level 1
Level 3 procedure
performed as level 4 procedure
9 END
10 END
11 END
12 P1 Procedure call at level 0
Explanation:

B Lines 1 and 11 define a level 1 procedure P1,
m Lines 3 and 10 define a level 2 procedure P2,
@ Lines 5 and 7 define a level 3 procedure P3.

® Lines 8 and 9 define a level 3 procedure P4.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER 3

SECTION:

PAGE:

17

3.9.

m Line 1 defines a procedure entry point P1 at level 0.
® Line 3 defines a procedure entry point P2 at level 2.
m Line 5 defines a procedure entry point P3 at level 0.
B Line 8 defines a procedure entry point P4 at level 1.

@ Line 12 is a procedure call on procedure P1 which is accessible at all levels.
The procedure P1 is processed at level 1.

w Line 2 is a procedure call on procedure P3 which is accessible at all levels.
The procedure P3 is processed at level 2.

m Line 6 is a procedure call on procedure P2 which is accessible at level 2 and
higher. The procedure P2 is processed at level 3.

m Line 4 is a procedure call on procedure P4 which is accessible at level 1 and
higher. The procedure P4 is processed at level 4.

PROCEDURE LABELS

As stated previously, the labels on the PROC and NAME directives are procedure
entry points, They may be referenced as procedure entry points only at those levels

or higher levels of subassembly at which the entry point is defined. They are in-
accessible below the level at which the entry point is defined. The accessible level
of the entry point is determined by the physical nesting depth of the procedure together
with the number of asterisks appended to the entry point label.

Other labels may be used within procedures. A label is a symbolic representation of
some value. It may be local or global. A local label may be referenced only at the

level at which it is defined or at higher levels. A global label is one which is defined
to be accessible beyond the range of the assembly in which it is defined. When a

label is defined to be accessible beyond the entire assembly, it is said to be externally
defined,

Labels defined in the main program may therefore be referenced within any procedure,
Labels defined within a particular procedute may normally be only referenced within
that procedure or by any procedure called upon by the first procedure.

Example:

000001 I

ooovon2 A PROC

000003 ONE EQU !
000004 Be PROC

000005 - LLK ONE
000006 THO EQU 2
ooopoo7 LLk TWO
0ooons LLx THREE
000009 END

o0ou010 LLK ONE
00001} B

ogopoi2 LLk THREE
000013 END

oouolLY p00003 THREE EQU 3
oouotLs .

000016 o un CALL NAME
ooovos7 .

oowo1s8 0o oUoopo 70 0ool A

00 oUgouty 70 oool

00 o0opoon2 70 oop2

00 000003 70 0003

00 oUooDo4 70 0003
000019 00 0UGDOS 70 o003 Lik THREE
00p020 END

UP-7599 3
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER cecmions .

Explanation:

m Lines 2 and 13 define a first level procedure, A.
m Lines 4 and 9 define a second level procedure, B.
m Line 3 defines ONE at level 1.

m Line 6 defines TWO at level 2.

@ Line 14 defines THREE at level 0.

m Lines 5, 7, and 8 illustrate that all three labels may be referenced within the
second level procedure B.

m Lines 10 and 12 illustrate that only the labels ONE and THREE may be referenced
in the first level procedure A.

® Line 19 illustrates that only the label THREE may be referenced in the main
program, The labels ONE and TWO are not defined to be accessible to level 0.

Labels defined within a procedure are unique to the level at which they are defined.
If the same label is defined at more than one level, any reference to that label will
be to the definition in existence at the highest accessible level.

Example:
oooood /e
ooooo2 A PROC
000003 ONE EQU 1
ooooo4 Be PROC
000005 ONE EQU 2
000006 LLk ONE ¢ ONE = 2
ooouo? END
00w008 B
000009 LLK ONE ¢ ONE = |
000010 END
000011 000003 ONE EQU 3
oooui2 .
000013 LX) CALL NAME
000014 .
000015 oo 00poop 70 0002 A
00 obooo} 70 ooo!
000016 00 000002 70 0003 LLK ONE « ONE = 3
opoot? END
Explanation:

m Lines 2, 4, 7, and 10 define the first and second level procedures A and B,
m Lines 3, 5, and 11 define ONE as 1, 2, and 3, respectively, at levels 1, 2, and 0.

® Lines 6, 9, and 16 illustrate that even though the same label ONE is used, the
values associated in each case are different.

NOTE: 1If line 5 were omitted, the reference to ONE in line 6 would result in a
reference to the value of ONE defined at the next lower level, namely 1.

UP-7599 3
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

SECTION: PAGE:

3.9.1. Global Labels

In order to define labels to be accessible at levels lower than the one at which
they are defined, asterisks are appended to the label definition. For each asterisk
appended to the label, the level of the label is decremented by 1. If the number of
asterisks appended to the label definition exceeds the subassembly level at which
it is defined, the label becomes an external definition and may be referenced by
other programs.

Global labels are defined only after the procedure in which they are defined has
been called.

Care must be taken that global labels are not multiply defined as a result of
repeated calls on the procedure in which they are defined.

Example:
000001 /e
noouo2 BREGS® PROC
0000023 Rlse EQu 1
000004 B2ee EQU 2
000005 B3e EQU 3
000006 END
000007 ,
oooo0o08e . oee CALL NAME
000009 .
000010 . BREGS
000011 00 00gooo 32 000! L8 Bl
000012 END

®s® SUMMARY eee
PROGRAM STZE? 00 Qoool

EXTERNAL DEFINITIONS: B2 B1

Explanation:
8 Lines 2 and 6 define the procedure BREGS.,

Line 10 calls on the procedure BREGS and causes the labels B1, B2, and B3
to be defined.

#® Lines 3 and 4 define the external labels B1 and B2 as external definitions.
@ Line 5 defines B3 = 3 at level 0.

W Line 11 illustrates that after the procedure BREGS is called, the label B1 may
be referenced at level 0.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER

SECTION:

PAGE:

20

3.10. FORWARD REFERENCES
Forward references occur when a label is referenced prior to its definition. Forward
references also occur if a label whose value is dependent upon values not yet
defined has been referenced. Forward references are prohibited if the fact that
different values associated with the label in pass 1 and pass 2 of the assembly
causes different amounts of code to be generated in pass 1 and pass 2 of the
assembly.
Example:
LABEL OPERATION OPERAND
10 20 30 40
SRS 00 T T S S W RES A ST S SO S S US S S SR
A L EQM L - N S T ST R R T SO U ST BT TSRS
[N VU0 WU SRS SN NN IS S lvloi I lBl)lol 1)1 iLlL\Ki I‘l [N Lot i1 [N R POV U D NS SO ST SHE SENOS SUN ot
§l< TR TN NN U SN O W | ILKLI ol b bl iAl bbb i d !Vi b doid i i b | R SO S L.
SN S U T S U T N N U U S S T O VO N Y B s [TR
Explanation:

@ A is not defined in pass 1.

@ B is not defined in pass 1.

The user is cautioned against basing the generation of code within a procedure
sample on a condition involving a forward reference. Consider a hypothetical
MOVE procedure. The programmer may check if the move from and move to
addresses are the same. On the first pass through the source data, the labels of
the from and to areas may or may not have been defined. On the second pass of
the assembler, the labels will have been defined. The values treached on each
pass of the assembler can be different.

If the procedure sample chooses an error exit on pass 1 (that is, no generation of
code) and produces code on pass 2, the labels following the call on the sample
are assigned a location counter value on pass 1 that is different in pass 2. The
result is a multiple definition of those labels.

When the assembler gets a different line count on the first or second pass, multiple
definitions of succeeding labels occur and the D error flag is set.

The user is reminded to take great care when using forward references.

UP-7599
Rev, 1

UNIVAC 418-11l RTOS ASSEMBLER : 3

SECTION:

PAGE:

21

3.11,

LOCATION COUNTER DEFINITION
A procedure may be made to generate code under one or more location counters by
defining the location counter in the label field of a line item within the procedure
sample. When the procedure is completed, the location counter active at the time
that the procedure was called is reactivated.
Example:
000001 /e
000002 As PROC
000003 sLul $(1)
0000DAY s(1) YY)
000005 END
000006 .
oopoo7 « *ne CALL NAME
oouo08 .
ooouo9Y oo 00oowo 30 o000 A suel
+ 6,12 0}
v o1 0UODGD 000DOD
+ 18 00 sugl
000010 00 0Ugoo1 30 ooal A sue2
« &y12 01}
v 01 000001 000000
+« 18 00 sug2
000011 END
en® SUMMARY ass
PROGRAM SIZE: 00 Uooo2 01 00002
EXTERNAL OR UNDEFINED REFERENCES: 5UB2 suBl
Explanation:
m Lines 2 and 5 define the procedure A.
® Line 3 generates an SL]JI instruction to the next word under location counter 1.
m Line 4 defines the subroutine entry address under location counter 1.
[|

Lines 9 and 10 generate two calls on subroutines SUB1 and SUB2 respectively.
The SLJI instructions are generated under location counter 0; the entry point
addresses, SUB1 and SUB2, are generated under location counter 1.

NOTE: Unless a map is submitted to force location counters 0 and 1 to be in the
same bay, the foregoing example is not executable.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER 3

SECTION: PAGE:

22

3.11.1. Writing Labels

A label may be affixed to the line of reference to a procedure. Under normal conditions,
this label is defined as equal to the value of the current location counter at the time

of the procedure call. It is possible to associate this label with a line within the
procedure, This is done by coding an asterisk (*) alone in the label field of that
particular line in the procedure. The label of the calling line is processed exactly as
though it has appeared in place of the asterisk except that it is defined at the level

of the reference line on which it appeared.

Example:

cooool /e

000002 Ae PROC 192

ooop003 Tz Allal)

000004 . J Al1y2)

000005 ENp

oouoDé .

oocon7 . ees CALL NAME

0owoo8 .

00u00Y 00 00gooo 57 0003 JP A ONE»TWO
06 00000G1 34 0004

0ooul0 00 000002 55 0001 J1 JP

006011 00 000003 0oooot ONE «l

oogoi2 00 090004 000002 THO 2

0ouoi3 END

Explanation:

®m Lines 2 and 5 define the procedure A, which generates the instructions TZ and J.
® Line 4 generates the instruction J and has a single asterisk in the label field.

@ Line 9 calls on procedure A. The label JP is defined as equal to the location
counter value of the J instruction instead of the usual TZ instruction which is
the first line generated.

3.12. Complex Procedures

The following paragraphs of this section contain a discussion of those assembler
features which enable the construction and use of complex procedures. When the DO,
NAME, and GO directives are used in conjunction with procedures, a powerful tool
exists for the generation of code which is conditioned by the supplied parameters.
Procedures may be used to conditionally generate code, The PROC structure enables
coding of generation alogrithms in the procedure sample, such that the code generated
applies the alogrithms and may generate entirely different tables or instructions,
depending on the supplied parameters,

3.12.1. NAME Directive
The NAME directive has three functions:
® It provides a local reference point within a given procedure sample.
m It provides alternate entry points to the procedure.

®m It may supply a value to the procedure which is unique for the associated
entry point.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

23

3.12.1.1.

3.12.1.2,

The NAME directive has the structure:

label NAME operand

The label field contains a symbolic label no longer than six alphanumeric characters,
which is used to identify the NAME directive. The operand field may contain a

value which can be referenced in the procedure sample by the paraform pn(0,0),
where pn denotes the procedure name.

The label of the NAME directive is defined in the same way as the label of a PROC
directive; that is, it is defined at the same level as the procedure, and asterisks
are used to make the label accessible at lower levels.

Local Reference Point

The NAME directive provides a local reference point within the procedure sample
in which it is defined. Associated with the label of the NAME directive is the
start of the symbolic code within the procedure immediately following the NAME
directive. By using the GO directive (see 3.12.2) or by using the NAME directive
as a procedure entry point (see 3.12,1.2), different paths through the procedure
sample may be chosen.

Alternate Entry Point

The NAME directive may be used as an alternate entry point to the procedure.

In this form the same rules applying to the PROC directive entry point apply

to the NAME labels, Regardless of the procedure entry point used for any partic-
ular procedure call, the paraform name is the procedure name.

Example:
o0ouool /o
oooto02 LADDe PROC
000003 LL LADD(L1}
ooo004 ADD® NAME
oouuos AL LADD(142}
00060606 END
0ooeu7 .
usouuoe R TY) CALL NAME
ooutng .
oouu1o 00 0U00UD 12 ooo3d LADD AsB
00 odoool 14 voo4
oouotl 06 000002 14 0004 ADD 08
gouci2 .
000613 o0 oOpoua oooood A +]
00D0 4 00 00go0w 000002 B +2
006015 END
Explanation:

m Lines 2 and 6 define the procedure LADD.

m Line 4 defines the alternate entry point ADD. The entry point ADD, because
of its position, does not point to the same procedure sample. If the procedure
is called upon through the entry point ADD, the subassembly of the procedure
starts with line 5.

m Line 10 calls on the procedure LADD and would generate the instructions:
LL A

AL B

UP-7599
Rev. 1

UNIVAC 418-1I1l RTOS ASSEMBLER

SECTION: PAGE:

® Line 11 calls on the procedure LADD but through entry point ADD, As a result,

the generated code would be:

AL

B

3.12,1.3. Parameter Value

000001}
000002
000003
000004
006G0Ss
000004
000007
0oo0os
0ooooY
00p01l0
Q000114
000012

Gooo13

000014
000015

Qog01é
000017

The paraform pn(0,0) has a value depending on the procedure entry point used in the
the function field of the procedure call line, If the procedure name is used as
the entry point, the paraform pn(0,0) has a value of 0. If an entry point defined
on a NAME directive is used, the paraform pn(0,0) has a value equal to the operand

+value of the NAME directive.

10 oop*
12 0005
46 0006
44 poo7

201400
gopooo

Lines 2 and 8 define the procedure L.

PRoC
NAME
NAME
FORM
END
CALL
LA
SA

«1,0

RES
END

NAME

1e2
o10 e LU FCNs CDEe
046 * SU FCNe CDEo
6412

LEO0,0) 61,10
012+0320(L(0s0)m046) 5L () ,0)+)

Lines 3 and 4 provide the entry points LA and SA. If the procedure is called
through the entry point LA, the paraform L(0,0) has a value 010; if called
through the entry point SA, the paraform L(0,0) has a value 046.

Line 6 generates an instruction with function codes of either 010 or 046, that

Line 7 generates an instruction with function codes of either 012 or 044, that

Example?
00 0Copooo
00 000001
00 000002
00 0000D2
00 000004
00 00U0OUS
00 0UDOGs
Explanation:
[]
-]
[
is, an LU or an SU.
]
is, an LL or an SL.
a

Line 12 calls on procedure L through the entry point LA, The code generated

1St

LU A
LL A+l

Line 13 calls on procedure L through the entry point SA. The code generated

1S

SU B

SL B+l

UP-7599 | 5
Rev. 1 : UNIVAC 418-11l RTOS ASSEMBLER |

SECTION: PAGE:

3.12.2. GO Directive

The GO directive provides a means of transferring control to the line whose label
is in the operand field. The format of the GO directive is as follows:

GO label

The label specified in the operand field must refer to the label of a NAME or PROC
directive and must be accessible at the level at which the GO is performed.

When the GO directive is encountered within a procedure, the next symbolic line
scanned in the procedure sample is the one to which the NAME directive referenced
points. The NAME directive referenced need not be defined in the procedure, As a
result, lateral transfer between procedures is possible through the use of the GO
directive.

In determining the label of the NAME directive referred to, the assembler uses the
following alogrithms:

m If the first character of the operand field of the GO directive is alphabetic, the
label is directly specified.

m If the first character of the operand field of the GO directive is not alphabetic,
the field is assumed to contain an expression. The resultant 36-bit value of the
expression is then used as representing the left-justified label.

Example 1:

aooool . /e

000002 X PROC 1

000003 MOVES® NAME

000G04 DO K(l,ei) 4 LU X(l, 1)
000005 DO X(l,e2) , LL K(l42)
0oLonés DO X(l,e3) , GO XI

006007 BT X(1,3)

000008 po | y END

oouuo9? X1 NAME

000010 DO X(1,3)<04000 4 LBK X(1,3)
ooouull 0O X(1,3)>03777 , LB (X(1,3))
aoooi2 Styl (MOVSUB)

000013 END

oouol4 '

000015 ' s CALL NAME

000016 .

000017 00 oloouo 10 0367 MOVE S(FROM)+*(TO0),l2

00 0000014 12 0370
00 06gou2 5070 14
oouote 00 0000G3 10 0367 MOVE s(FROM)*(T0),*120
00 00Qoo4 12 0370
00 0000US 36 0170

U 00 0000GS 30 pard
000019 oo 000007 FROM RES 120
00u02U 00 00p177 TO RES 120
nocozi END

00 000347 00oo07

0o 090370 000177

V) 00 00037 ogoouo
sae SUMMARY wsee

PROGRAM SIZE: 0o Uoarze

EXTERNAL OR UNDEFINED REFERENCESS MOVSUB

UP-7599

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER 1 cecnions 2 cacm 20

Explanation:

B Lines 2 and 13 define the procedure X.

M Line 3 provides the entry point MOVE,

® Lines 4 and 5 generate LU and LL if the first two parameters are preceded by an
asterisk.

The GO directive on line 6 will be performed if the third parameter is preceded by
an asterisk. If so, lines 7 and 8 are ignored and the procedure subassembly resumes
at line 9.

B If no asterisk appears in the third parameter, line 7 generates a BT instruction.

®m Line 8 terminates the subassembly of the procedure. Note that the DO statement
is used to avoid the termination of the procedure sample which would result if just
an END statement were coded.

® Lines 10 and 11 generate either LBK or LB, depending on the number of words
to be transferred.

B Line 12 generates an SLJI call on the subroutine MOVSUB.

B Line 17 calls on the procedure X through the MOVE entry. Since no asterisk
precedes the third parameter, a BT 12 instruction is generated in addition to
the LU and LL instructions.

® Line 18 calls on the same procedure but because the third parameter is preceded

by an asterisk, the code generated is:

LU (FROM)
LL (TO)
LBK 120

SLJI (MOVSUB)

UP-7599

’ ‘ 3 27
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER sEcTION: o hces

Example 2:
000001 /o
000UG2 X PROC 1
000003 MOVEs® NAME
000L04 00 Kll,sl) , LU X(l,1)
00uGoS DO K(1,e2) , LL X(1,2)
000C06 00 X(1,#3) 4 60 X1
GOULGT BT X(1,3)

608 END
335089 X1 PROC 0,2
00GUI0 DO X(1,3)<04UUD 4 LBK X(1,3)
oavuld DO X(1,3)>03777 4, LB (X(1,3))
0oo012 SLJl (MovsuB)
000013 END

)14 . .
ggzgis . oo CALL NAME
ouoi6 .

302017 00 0V00nD 10 0367 MOVE SUFROM),#(T0),12

3.12.3.

00 000001 12 0370
00 0Cgoo2 5070 14
oooole 00 000Qu3 10 0367 MOVE ®(FROM) 4*(T0) %120
0o 0Cpouwy 12 0370
o0 00paos 36 0170

u 00 0Laoueg 30 0arl .
0ouLo19 00 0Goou7 FROM R;s lgu
000620 oo oGotzy T0 RES 120
ooubel END

00 0UD3e7 gooooz

0C 0V037y 000377

u 00 00037y ooovoo
ss® SUMMARY wses

PROGRAM S1ZE$ 00 Opazz

EXTERNAL OR UNDEFINED REFERENCES: MOVSUg

Explanation:

Example 1 is functionally identical to example 2. Instead of a single procedure,

two separate procedures, X and X1, are defined, and the GO directive is used to
transfer into the second procedure.

® If the NAME directive referred to in the GO statement is not defined or is not
accessible at the level of subassembly of the GO directive, an expression

error results (E flag) and scanning of the procedure resumes at the next line of
the procedure sample. '

B The GO directive may direct the assembler to resume processing of the subassembly
at the occurrence of the specified NAME directive. The NAME directive may appear
anywhere; that is, it may be a forward or back reference, or it may be a transfer
into another procedure. As a result, great care must be taken to avoid infinite loops,
caused by using the GO directive inappropriately,

DO Directive

The DO directive, as previously explained, is used to conditionally generate one

or more words of data. The DO directive in the assembler is a powerful tool which,
when used within procedures, provides great flexibility and power, When combined
with the GO directive, the DO directive can be used to generate series of instructions
iteratively as well as conditionally. The following paragraphs detail the rules which
apply when these two directives are used together,

up-7s9 UNIVAC 41811l RTOS ASSEMBLER 3

SECTION: PAGE:

3.12.3.1. Conditional DO

If one of the conditional operators, < = or >, govern the determinant expression
in the DO, or if the determinate expression has a value of 1, the GO directive is

performed exactly as though the DO directive were absent. Therefore, the ex-
pressions:

DO 1 , GO A
and

GO A

are functionally identical.

3.12.3.2. Generative DO

If the determinant expression of the DO directive is greater than 1, the DO

is said to be of the generative type. When the GO directive appears as the DO-
item of a generative DO, the GO is performed iteratively as many times as the
repeat count specifies. When an END directive is encountered, the next GO is
performed. When the DO count is exhausted, processing continues at the state-
ment following the DO.

Example:
oounol /o
oouune X PROC
[VE] LUSTOR« NAME
(AL 1 DO X s GO X}
0O0ULS 06 1 4 END
0oLuwie X1 NAME
0ooLUu7 LA X{1sl1)
CouCne SA XC1s2)
0oouo9 END
ouuolo .
0000l . suw CALL NAME
Qoubi2 .
ooRLL3 DO OUOOUD 10 oo14 LDSTOR ArB CyD E,F

oD ovouot 12 0015

00 0Gpou2 46 (016

00 obooul 44 goi7

00 oLQous 1o oo20

00 oU0DGY 12 anzl

00 0Gpoue 46 G022

00 0VoOou7 44 (023

00 00CO010 tu oo24

0Uu 0000i1 12 0025

oGc aOoul2 46 G026

00 000013 44 o027
ouuntLH .
ooubis uD oUDOD1LY 201400 A +1,0

00 000015 0oouoo
00L016 00 000016 B RES 2
vopul7 00 OUpOD2U 202600 4 +3,0

00 0UQO21 000UVO0D
oooule 00 0V0022 [RES 2
000019 00 000024 203500 E +5,0

00 00Q02% 000U00
poou20 00 000026 F RES 2
pouozl END
Explanation:

m Lines 2 and 9 define the procedure X.

m Line 3 provides the entry point LDSTOR.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER

SECTION:

PAGE:

29

® Line 4 cowbines a DO and GO directive. Since the paraform X may have a
value between 0 and infinity (actually the maximum number of fields allowed
is 176g), it may be either a conditional or generative DO. Assuming X>1, the
DO is of the generative type. As a result the GO X1 is performed X times.
Each time, transfer is made to line 6, and the procedures LA and SA are
performed. After the DO count is exhausted, line 5, which terminates the

subassembly, is performed. If X=1, transfer to line 6 is made, and subassembly

is terminated upon encountering the END directive in line 9.

@ Line 7 calls the procedure LA, which generates the instructions LU and LL.

®m Line 8 calls the procedure SA,which generates an SU and SL.

® Line 13 calls on the procedure X and generates the instructions:

LU
LL
SU
SL
LU
LL
SU

and so on through F.

A
A+l

B+1

C+1

D

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER

SECTION:

PAGE:

30

Example:

gooool
[sJJe1¢]s T
000003
000004
00a0O05
0ooo0e
000007
oouGoe
000009
coooiu
goootl
oooui 2
000013
000014
000015

gouo1e6

000017

PROGRAM SIZE}

00
oo
o0
oo
00
oo
oo
0o
oo
oo
[o]8]

0o

+]¢]
oo

oo

odpouo
olooul
obpooz
oboooa
o0ocos
o0vpoos
olpous
ovpour
olooig
ouuoll
oboot2

000013

000014
000015

oluolé

00 Gpol7

EXTERNAL OR UNDEFINED REFERENCESS

Explanation:

/e
x PROC
CALLIOw NAME
SLul (OPEN)
1 po X+2 , GO X1
SLJl (CLOSE)
X1 NAME
po I>X o END
LLK X(Is1)
Skuyl (GET)
END
L]
. wow CALL NAME
.
30 0014 cALLIO 1 3 5
+ 6,12 00
70 ouol
+ 6,12 00
30 ©ULS
« 4,12 0O
70 ooo3
« 4,12 00
30 00is
+ 6,12 00
70 ooos
+ 6,12 00
30 0o1s
+ 6,12 00
30 vO1é
+ 6,12 ULO
30 po14 cAaLLio 2
+ 6,12 00
70 0002
+ 6,12 00
30 0Uib
+ 4,12 00
30 0016
+ 6,12 UO
END
gocooou
+ 8 00 QPgN
gooooo
* ao GETY
000000
+ 18 00 CLOSE
sas SUMMARY see
CLOSE GET OPEN

Lines 2 and 11 define the procedure X.

Line 3 provides the entry point CALLIO.

Line 4 generates a call to subroutine OPEN.

Line 5 is a generative DO directive which transfers to line 7. The determinant

value is forced to be greater than 1 so that line 6 must always be generated
upon completion of the DO. For each parameter supplied, an LLK parameter

value and an SLJI (GET) are generated at lines 9 and 10.

Line 6 generates a call to subroutine CLOSE.

Line 8 terminates both the DO count when I>X and the subassembly after the

generation of line 6.

UP-7599

Rev. 1 UNIVAC 418-i1l RTOS ASSEMBLER

SECTION:

PAGE:

31

AT

m Line 15 calls on the procedure through entry point CALLIO to geherate the

® Line 16 calls on the procedure through entry point CALLIO to generate the

instructions:
SLJI (OPEN)
LLK 1
SLJI (GET)
LLK 3
SLJI (GET)
LLK 5
SLJI (GET)
SLJI (CLOSE)
instructions:
SLJI (OPEN)
LLK 2
SLJI (GET)

SLJI

(CLOSE)

UP-7599
Rev. 1

UNIVAC 418-1il RTOS ASSEMBLER 4

SECTION: PAGE:

4.1.

4.2.

4. ASSEMBLER OPERATION

GENERAL

This section discusses the ways in which the assembler is to be used, what results
are produced, and the meaning of the error diagnostics and messages which may result
during the operation of the assembler.

CONTROL CARD FORMAT

The assembler is an element of the Real Time Operating System (RTOS) and operates
under its control. The assembler may be called upon to assemble a symbolic program
through the use of the @ASM control card.

The @ASM control card has the form:

@ASM,options pronam
The program name, designated by the parameter pronam, is the name of the symbolic
element to be assembled, and will be the name given to the produced relocatable
object code element.

If no options are to be exercised, the comma following the ASM function may be
omitted. At least one blank character must follow the option field. If no options are
specified, the symbolic statements to be assembled must immediately follow the
control card. Upon the occurrence of either another control card or an END directive
which does not signify the end of a procedure sample, the assembler is terminated.

The following options may be present on the @ASM control card:

T — Results in listing all inserted elements.
M - Results in listing the mode value of all data words generated.
N - Results in the omission of all listings except those statements containing

an error flag.
A -~ Results in the omission of all listings.

— Results in the listing of a cross-reference of all labels referenced in the
assembly after the assembly is complete.

P — Results in the punching of a relocatable object-code card element.

~ Specifies that the source to be assembled is to be found in the user run
library as a symbolic element. Correction cards may follow the @ASM
control card.

NOTE: An A option overrides the presence of the N, T, and R options.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER 4

SECTION: PAGE:

4.3. ASSEMBLER OUTPUT LISTING

Unless an A or N option is present on the @ASM control card, the assembler ptoduces
a printed listing of the symbolic statements processed together with the code pro-

duced.
Example:
003013834 WASMyeT THe|
UNIVAC 418=111 ASSEMBLY == MAR 17 1970 00:pli34

000001} START,
00w002 [V} po oboouo 30 00158 SLJl (FRMBUF)
000003 INGERT LEVEL]
oooool 01 O 00 000001 12 oo0s7? LL XX2
000002 01 00 olgoou2 10 oool [NV} XX3
000003 01 00 00oo03 32 0002 LB XX4
000004 01 INSERT LEVELZ2
00000} 02 00 0UpOoO4 76 ooo7 SLy PRINT]
000002 02 00 0U00US 32 ooo! LB KX3
000003 02 00 000006 34 poo0 J START
000004 02 INGERT LEVEL]
000004 Q3 00 00pou? 000000 PRINTLle * 0
000002 03 E D0 00co10 001004 PRINTS PRI BUFs44,]

po 00001} 000014

00 0UpO01I2 000003

00 000013 000454
000003 03 00 000014 55 U007 PR1 J1 PRINTI
oouo04 03 INSERT LEVELY
000004 04 $(10),
000002 04 D 10 00p000 000000 xx2 + 0
ooU003 04 10 olooul 000000 XX3 * 1]
000004 04 10 00po02 000000 XX4 . 0
000005 04 10 000003 BUF RES 44
000004 D 10 000057 000000 xXX2 . u
000005 000000 END START,2

u pD 000015 000000
se® SUMMARY eas
PROGRAM SIZE: 00 000l 10 00060

EXTERNAL OR UNDEFINED REFERENCES! FRMBUF

EXTERNAL DEFINITIONS? PRINTI

POUBLY OEFINED LABELS: X2

EXPRESSION ERRORS} 001

INSERTED ELEMENTS! LEVEL) BY Té=]
LEVEL2 BY LEVELI

LEVEL3 BY LEVEL2
LEVELY 8Y LEVELY

Explanation:
m Field 1 contains the line number of the symbolic statement.

m Field 2 is present only when the symbolic code being assembled comes from an
inserted element, and identifies the level of inserted elements.

m Field 3 is present only if diagnostic warnings are produced, and identifies the
type of error detected.

m Field 4 identifies the active location counter.
m Field S contains the relative value of the active location counter.

m Fields 6 and 7 contain the binary value of the code generated.

UP-7599
Rev. 1

UNIVAC 41811l RTOS ASSEMBLER sEcTioN: rees

The remainder of the line reflects the supplied symbolic image.

Following the END directive, all literals are printed.

The summary printed at the conclusion of the assembly specifies:

4.3.1

the size of each location counter used;

the names of external or undefined labels;

the names of any externally defined labels;

the names of any doubly defined labels;

the number of diagnostics that occurred during the assembly;

the names of any inserted elements and the elements which caused their
insertion.

Mode Listing

If the M option is present on the @ASM control card, each line of generated code
is followed by the mode value of the data word produced. The mode value
indicates:

the size of the relocation field;

the location counter of the operand field;

B the label of an external reference;

B the presence of the IBOO operator;

B whether the data word is to be relocated;

B whether positive or negative relocation is specified;

B whether the external reference is to be added or subtracted.

The format of the mode value line listed is:

I r fs le s label

where:
I is present if the IBOO operator is present in the expression.
t is + if positive relocation is specified;
is — if negative relocation is specified;
is blank if no relocation is to be performed.
fs is 18 if the entire data word may be relocated or modified by the value of

the external reference;

is 6,12 if the lower 12 bits may be relocated or modified by the value of
the external reference,

UP-7599 4
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

SECTION: PAGE:

lc is the location counter under which the operand expression is to be relocated,
and is O if the operand field in nonrelocatable.

s is blank if the value of the external reference is to be added;
is — if the value of the external reference is to be subtracted.
label is the name of the external reference.

NOTE: The M option should be used only if there is a need to examine the mode
values generated. Even though the assembly is not significantly slowed
down, an extra line of print is generated for each word and may cause an
early overflow of the symbiont drum space.

Example:
00:01:35% DASM M T4=2
UNIVAC 4l8=111 ASSEMBLY == MAR 17 1970 00301335
000001 00 odpouo RES 8
ooouco2 no 0LOOlO 70 oo00! TAG LLk i
+ 6412 00
poooo3d 00 oUgoll 12 0010 LL TAG
+ 6,12 0O
ooooOoY ps odoouo 000000 $(5),TAGS +0
+ 18 00
000005 00 oUpoil2 12 7777 s(0) LL =~TAGS
- 6,12 08
000006 00 0UOODL3 ooualo *TAG
. . 18 00
coooo7 00 000014 7777717 =TAGS
- 18 05
goopoos o0 0Coois 12 ooa2l kL (TAGS 1)
+ 6,12 00
ooooo9 u 00 000016 12 ooo3d LL UREF+3
+ 6,12 00 UREF
oopo1o u 00 0UOD}7? 12 oooé LL 3#2~UREF*+TAGH
: + 6,12 U5 = UREF
cooo1ll U o0 o0oo20 ooonoo =UREF!
1+ 18 DO = UREF
000012 END
00 0V002} 000000
I+ 18 0S8
*e® SUMMARY wsa
PROGRAM SI1ZE: 00 Ygo22 05 00001
EXTERNAL OR UNDEFINED REFERENCES: UREF
Explanation:

m Line 2 is a constant.

m Line 3 is 12-bit relocatable. The operand value is to be relocated under location
counter 0.

®m Line 4 is a constant.

® Line 5 is 12-bit relocatable. The 12-bit operand value is to be relocated under

location counter 5. Relocation is negative; that is, the relocation base is to be
subtracted.

m Lines 6 and 7 are 18-bit relocatable.

® Line 8 itself is 12-bit relocatable. The referenced literal is 18-bit relocatable
and IBOOed.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER 4

SECTION: PAGE:

m Line 9 is 12-bit modified by the value UREF.

m Line 10 is 12-bit relocatable by location counter 5, and 12-bit modified by the
value —UREF.

m Line 11 is 18-bit modified by the value —UREF and IBOOed.

4.3.2. Cross-Reference Listing

If an R option is present on the @ASM control card, a cross-reference listing of
all referenced labels will be produced at the end of the assembly. Although the
cross-reference itself does not significantly slow down the assembly, six words
of storage are used for each label reference when the R option is present. As a

result the assembler label table space requirements may be significantly larger
during the assembly with an R option.

At the conclusion of the assembly, all referenced labels are printed in alphabetic
order together with the location counter value at which they were assigned, the
location under which they are defined, and the subassembly level at which they
were defined. The location counter and location counter value of each reference
to the label are also printed.

If a reference is made to a labeled constant, the decimal value of the constant is
printed. The octal value is printed between brackets.

Example:
00301836 BASM R T4=3

UNIVAC 418=111 ASSEMBLY == MAR 17 1970 0oi0li36
000001 xe PROC
o0oco02 I EQU 10
000003 . LLK 1
000004 END
000005 00 olpooo 12 0005 START L Lai
000006 v 9o 000001 70 0000 LLK UND
000007 v 00 000002 5070 00 8T 1
000008 00 000003 12 Gooé LL 182
000009 00 000004 12 o005 LL LBl
000010 00 00poos 70 0012 Lel X
00003 00 000006 70 0012 LB2 X
006012 00 000007 34 goo0 J START
000013 END

a9 SUMMARY ees
PROGRAM SIZE? oo Oooto
EXTERNAL OR UNDEFINED REFERENCESS 1 UND

see CRDSS REFERENCE LISTING %o

1 WUNDEFINED LEVEL D0} REFERENCED AT LINE(S)} = 00002 0O
! = 000010 (DOOD12) LEVEL 01} REFERENCED AT LINE(S)} = 00005 00 - 00006 00
LB1 DEFINED AT 000095 00 LEVEL 007 REFERENCED AT LINE(S)S = poo0g o0 = 000D4 0O
LB2 DEFINED AT 000006 00 LEVEL 003 REFERENCED AT LINE(S)i = 00003 00
START DEFINED AT 000000 00 LEVEL 003 REFERENCEpD AT LINE(S): = 00007 0O
UND VUNDEFINED LEVEL 00! REFERENCEp AT LINE(S)3 = 0000y 00

UP-7599 4
Rev. 1 UNIVAC 418-1li RTOS ASSEMBLER

SECTION: PAGE:

4.4. SYMBOLIC CORRECTIONS

If the * option is present, the symbolic code is assembled from the user run library.
Corrections may be made to the symbolic code. Correction cards immediately follow
the @ASM control card and are terminated by the occurrence of another control card.

The line numbers listed in the first column of the assembly are used to indicate whict
images are to be removed or altered. Correction cards are not added to the symbolic
element in the library. Correction cards do not cause the line numbers on the listing
to be changed, so that no matter how many corrections are made, the line numbers
still reflect those associated with the original symbolic element,

Symbolic lines which are deleted as a result of the supplied corrections are marked
and listed with ——— following the line number. They are not assembled.

New symbolic images supplied in the correction deck are marked with +++ following

the line number. The line number associated with new symbolic images is that of the
last statement in the original element.

Example:
003013536 PASMo® T4=4
UNIVAC 418w]]] ASSEMBLY == MAR |7 1970 0oiolilde

000001 === ==a START LLK 1
000001 +++ on o0pooo 12 0046 START LL (700
ogooo2 00 000001 10 0047 Ly ;FRUM)
000003 o0 000002 5070 07 8T
000004 === LT MOVE FROMs(TO)
000004 +++ 00 000003 10 0047 MOVE FROMyTO,7

00 000004 12 0046

00 090005 5070 07 cous
000005 00 000006 770300 J
000006 o0 00goo7 FROM RES 25 ,
000006+++ 00 000040 663334 TO 'THIS 1S DESTROYED

00 000041} 650034
00 oVQo42 650027
00 000043 JV6564
00 000044 545173
D0 000045 302700
000006+++ uooooo END START,3
00 000046 000040 -
00 000047 000007

Correction cards having the following PUR-compatible format. Lines are deleted by
specifying:

—n,m

where n is the first and m is the last line to be deleted. Following the correction

card, symbolic statements may be supplied. These are inserted in place of the
deleted images.

In order to add new symbolic images, the card:
—-n
where n is the line following which corrections are to be inserted, is supplied.

The symbolic statements to be added after line n follow the correction card.

Correction cards must be supplied in ascending line number sequence. The — must
occur in column 1 of the correction card.

UP-7599

UNIVAC 418111l RTOS ASSEMBLER

Rev. 1 4
SECTION: PAGE:
Example:
LABEL OPERATION OPERAND
10 20 30 40
mdl FIPYS PR S S RO ST OO AN WY WA TUNY Y N OO GO S S Y Y S A SN T A S B RO Lol
START, | N 1(1 &) S N N B LoL |
4,8 I U O S TN B RO N W S A T N O A O T O TR T R W B
SR L MOVE . F ;UM.IT;U;,I'I. Lo N R U B |
L]
~o el e by by N R B Ll
[
T . 1N THIS, 18 DE STROYED' | | [W N T I Lol

SN WD U SN SO B |

END , bl ﬁ;fr.&J2frﬂ,£5, R !

ILIIIIII

4.5.1.

DIAGNOSTICS

Errors detected by the assembler in processing a symbolic statement are flagged.

Depending on the particular error, the code may or may not be generated correctly.

Some diagnostic flags are not indicative of errors but are warnings.

The address warning diagnostic A is generated if the 12-bit operand address of a
type I or II instruction has a location counter value such that the instruction and

Address Warning (A)

the referenced address are in different bays. If the operand address is relocated

under a different location counter from the instruction, no A-flag will be generated.

Example:

000001}
ooo002 A
000003
cooooY
000005
006006
ooooo7
000008

PROGRAM SIZE3:

ADDRESS WARNINGS?

00 0Cooo0
00 000001
00 0100}0
00 0l0011
01 00o0ooo
01 0loooy

00 loo012

out

12 o010

Q00000
12 0007

000000

o1 10010

/o

s(1)

LL
RES
+0
[X8
RES
«0
END

A
Q10007

-]
olooo7

wee SUMMARY ese

UP-7599

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

4.5.2. Format Warning (F)

The format warning is generated if a 2,16 FORM directive has a relocatable address
reference in the second expression.

Example:

000001
000002
000003
0000GY
0000605

/e

1F FORM
00 00povuo 000001 IF
00 000001 70 oool LABEL Lik

END

4.5.3. Truncation Warning (T)

A field truncation warning is generated if:

2916
DoLABEL
1

m the value of an expression in a FORM reference exceeds the size of the field;

or

®m the value of the operand field in a type I or II instruction is a constant exceeding
07777. If the constant is negative and the instruction is an LBK, LLK, or ALK,
the T flag is not generated.

Example:

oooool
000002
000003
000004
000008
000G0é
ooooa7
000608
000009

PROGRAM SIZE?

/o

IF FORM
00 o0pooo 160064 IF
00 0UoO0G} 70 7772 LLK
00 000002 70 0000 LLk
00 006003 12 3720 Lt
00 0060uy4 12 1610 LL
00 0Go0Gs b4 7765 Jup

END
*e® SUMMARY aeee

00 Ooooe

TRUNCATIUN WARNINGS! 00u4

4.5.4. Level Error (EL)

SyH95,4
7,2000,3420
=5

010000

2000

5000

=10

A level error indicates that the number of nested expressions exceeded the maximum
of six. The resulting expression value is 0.

Example:
000001
000002 EL
000003
oogQo4 EL
000005
000004

PROGRAM SIZEZ
EXPRESSION ERROQRS!

LEVEL ERRORS;

/e
00 00000 12 0003
000002 Atl)
00 0Y%0001 000000 ACACACALACAGALIY O)

00 0R0002 000001

00 080003 Qoooo7?

we® SUMMARY wes

00 Poo0y

0oc2

002

Ll (lelie(lslle(iellelle2)))
EQU 2

EQU 2

+A(L)

END

UP-7599
Rev. 1

UNIVAC 418-1l1l RTOS ASSEMBLER 4

SECTION:

4.5.5.

Instruction Error (I)

An instruction error indicates that the assembler detected an illegal operation field
or label field specification. An I flag is generated if:

B a symbolic label is detected in the operation field which is not a defined label,
procedure entry point, assembler directive, FORM name, or mnemonic instruction;

B a location counter is defined in the label field and the terminating character is
not a space, comma, ot period;

® the label field is not terminated by a space, asterisk, or period;

® the type number on an INFO directive exceeds 7;

m the type field on an INFO directive is not terminated by a space;

m the location counter specified on an INFO directive exceeds 15 or is not terminated

PAGE:

by a space or comma;

B an EQU directive does not have a label in the label field; or

B a procedure call line references a procedure entry point in the parameter expressions.

Example:

00301340 BASM T4=10
UNIVAC 418=111 ASSEMBLY =e MAR 17 1970 DO!OI:?U
**PROCEDURE JZL NOT IN LIBRARY = CALLED AT LINg 000U01 BY ELEMENT T4~=10
Quoogl VEL 00 0090600 gooouo JZIn s+
6oooo2 1 10 olpooo 34 000!} 5(10)LABEL J s}
000003 I LABEL+O
000004 1 INFO 8 0
000005 1 INFO 740
0onooé 1 {NFO 7 17
0oGo07 1 000005 $(1) EQu)
ooouGo8 X® PROC 11
Q00009 +5
000010 END
000011} 1 o1 0Uooopa 000005 (X
p0po12 END
ot SUMMARY wew

PROGRAM SIZE: 00 Uoooy @l oolo!l 10 Cp0O1

EXTERNAL QR UNQEFINED REFERENCES! JiL

EAPRESSION ERKURS? 001

INSTRUCTION ERRORS: 008

UP-7599
Rev. 1

E]

UNIVAC 418-111l RTOS ASSEMBLER |

SECTION:

PAGE:

10

4.5.6. Relocation Error (R)

4.5.7.

4.5.8.

Relocation warnings or errors are generated if elementary items are combined in
such a way as to cast doubt on the validity of the expression.

Relocation errors are generated if a relocatable item is combined with a constant.
See Table 1-3 for details of allowed mode combinations.

Example:
[s]a)eRe):R} /e
Qogco2 00 oYaooo RES 5
000003 R 00 oUpgys 000005 A +AenS
00ULGH 00 0UQVO& 000240 +5e/h
000L0S R 0o 000007 00OCUULA “Asl2
000006 00 000OIU 000UOS +hel
000067 R 00 0060011 000012 “Ae2
0opopa END

as® SUMMARY ene
PROGRAM SIZE: 00 Upoi2

RELUCATIGN NARNINGSS DU3

External or Undefined Warning (U)

The U flag is set when a label is referenced which is not defined in the assembly. If
the label is externally defined in some other element, the loader collects the elements.

Example:
000001 /o
000602 u 00 000000 70 0000 LLK ABC
000003 u 00 0Gonal 12 0002 L (LABEL)
000004 END
v 00 090002 0VOOOG

“s® SUMMARY ese

PROGRAM SIZE: 00 Youoa

EXTERNAL OR UNDEFINEQD REFERENCES? LABEL AsC

Double Definition Warning (D)

A double definition warning is generated when the value assigned to a label changes.
The assembler processes the symbolic code twice. As a result, a D flag may indicate
that a label is defined at different relative locations because of a pass conflict; that
is, different amounts of code were generated in pass 1 and pass 2 of the assembly.
The D flag is set if:

B a label defined previously is redefined to have a different value. If the label is
a dimensioned label, the D flag is suppressed;

® a label defined in pass 1 of the assembly does not have the same value when
redefined in pass 2;

B a paraform contains a reference to a doubly defined label;

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER

SECTION:

PAGE:

11

m a PROC or NAME entry point is defined or multiply defined, regardless of the
level of the entry point;

B a literal contains a reference to a doubly defined line item; or

m an expression references a doubly defined label.

Example:

000003
000602
000003
000004
000005
00G00s
oQooo7
600008
000009
000610
000011}
Qo062
000G13
oooo1Y
000015
000016

PROGRAM SIZE?

* R < el o)

00
00
00

o0

oo
["]Y]

oo

o0goon
000001
000002

000003

olonoy
06ooos

000006

oo toooy

00VbuLY DEFINED LABELSS

4.5.9. Expession Errors (E)

Expression errors indicate that the syntax rules for defining an expression were
not obeyed. Expression errors are generated if:

R an elementary item is not followed by an operator or terminator;

12 0002
12 0000
0000600
000001

o00ooo2

000000

000009
12 oooé

0oooo2

/o
TA
Te
T8

pe

LL
LL
+0
EQU
EQU
PROC
+0
END
P

PRoC
+1
END
P

LL
END

ens SUMMARY wee

an operator is not followed by an elementary item;

T8

T8
$=}

-

(78)

m 1a floating-point number is written so as to have an octal integer part;

B a floating-point number exceeds the maximum value;

® an item is multiplied by, divided by, or compared with an item which is undefined;

m a paraform with subscript is not terminated by a comma or bracket;

B two items ate compared which do not have the same mode value;

B two items are compared and one is undefined;

B two relocatable items are combined and are relocated under different location
counters;

® an alphastring or double floating-point number occurs in a literal;

m a dimensioned label is defined or referenced which has previously been defined

with smaller dimensionality;

an LSD or SSD instruction is indexed;

UP-7599
Rev. 1

UNIVAC 418-1ii RTOS ASSEMBLER

4

SECTION: PAGE:

12

8 a type II instruction is indexed;

B a FORM reference has more than the allowed number of operand expressions;

B a GO directive is used and no operand expression is present;

8 a FORM directive is defined for more than the allowed field sizes;

® an INSERT directive is specified without operand field;

® a label has more than six characters; or

B a location counter larger than 15 is referenced or defined.

Example:

00000l

000002 3 00 oUpouo 000005

0006003 E 00 00000} oooaoon

000604 [00 0dUo002 204406
00 0V0003 314631

000005 E 00 0G6000y oouaoo
00 000005 000000

DoB00G E 00 0vp0oUs 000000

000007

000008

000009

00Go10

0oL01}

0Qowi2

00G013 00 0UpoOY? goooo2

E 00 0booi0 000000
UE o0 00001} 000003

000014 E

000015 E 00 00p012 000000

000016 £ D0 000013 000001

000017 05 000000

000018 E 00 000014 12 0033

000039 3 00 000D1s 12 0035

00G020U 00 QYOOI 70 0005

oooozi E 00 000017 000000

ooopo22 E 00 00oD20 12 ooo0

000G23 E 00 0U0021 502000
00 00p022 000001

000024 E 00 000023 64 0001

000025

00u02é E 00 000024 100002

oogo27 €

000028 E

p0opo29 £l

000030 E 00 0U0025 , 12 0026

000031 E 00 000026

0ooo32
00 obooas 242526
00 060034 273031
00 000035 000000
00 000036 000000

PROGRAM SIZE! 00 Y0037 05 00005

EXTERNAL OR UNDEFINED REFERENCES!
EXPRESSION ERROQRS! 022

INSTRUCTION ERRORS: 001

uLBL

/e
+5X
A 5
+03042
+10eESD
+3dsUlLBL
xe PROC
+2
+X(1,
GO
+3
END
3 1
[:]¢] A>2 4 *3
+ULBL>2
+*A+B
5(5),8 RES 5
$(0) LL (YABCDEFGH®)
LL (1.03)
0ll, 1) LLK 5
DElely1) LLK 3
LL Dllalsl)
LSp oA
Jup .A
IFA FORM 3,15
IFA 10243
1F FORM 251593
INSERT
LABEL7C LLk 3
LL $(17)+1
$(17) RES 5
END

se® SUMMARY ase

UP-7599
Rev. 1

4

SECTION:

UNIVAC 418-111 RTOS ASSEMBLER l

PAGE:

13

4.6.

4.6.1.

4.6.2.

4.6.3.

4.6.4.

4.6.5.

ERROR MESSAGES

When abnormal situations arise in the course of an assembly, the assembler prints
a message which specifies what happened and continues or terminates depending on
the nature of the problem.

Element Not Found

If a symbolic element is to be inserted and cannot be found in either the user or
system library, the message:

*¥x ELEMENT xxxxxx NOT IN LIBRARY , CALLED AT LINE 11111l BY ELEMENT

ccccecece

is printed and the INSERT directive is ignored.

Procedure Not Found

If a procedure is referenced which is not defined in the program and is not present
in the user or system library, the message:

**x*x PROCEDURE xxxxxx NOT IN LIBRARY , CALLED AT LINE l1iilll1 BY
ELEMENT cccccce ’

is printed and the procedure call is assumed to be a label reference. Note that

a possible procedure call is signified by the occurrence of a symbolic label in the
operation field which is not a previously defined FORM reference or mnemonic
instruction.

END Card Omission

If the symbolic statements are not terminated by an END directive, the assembler
inserts the image:

END #*** ART GENERATED ***

Drum Library Overflow

If the code generated in the course of the assembly causes the library to overflow,
the message:

*¥*ASSEMBLY ABORTED — DRUM LIBRARY OVERFLOW***

is printed. The element is not placed in the library.

Main Storage Overflow

If the assembler attempts to obtain additional main storage space because the
procedure sample storage or label table is filled, and no space is obtained, the
assembly is terminated with the message:

¥kASSEMBLY ABORTED — PROCEDURE TABLE OVERFLOW*

or

¥%ASSEMBLY ABORTED — LABEL TABLE OVERFLOW*

Prior to terminating, the assembler tries to obtain as little as 512 words of memory

to expand its tables.

UP.7599
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

4.6.6. Internal Error
If an error condition occurs within the assembler, the message:
***ASSEMBLY ABORTED — INTERNAL ERROR*#**

is printed and the assembler terminates automatically. The programmer should try
the run again. If the problem continues to occur, a report should be filed.

4.6.7. Element Deletion

At the conclusion of the assembly, the code produced is registered in the user library
as a relocatable element. If a relocatable element by the same name already exists
in the library, it is deleted and the message:

THE RELOCATABLE ELEMENT xxxxxx , (CREATED mm:dd:yy) ,
HAS BEEN DELETED #*** ,

is printed. The month (mm), day (dd), and year (yy) refer to the date that the deleted
element was created.

4.6.8. Correction Errots

When correction cards are submitted, several errors may be detected.

If a correction card references a line number beyond the range of the element, the
message:

*** LAST CORRECTION EXTENDS BEYOND ELEMENT ***

is printed, and the correction cards are ignored.

" If a correction card references a line number smaller than one previously referenced,
the message:

*** SEQUENCE ERROR ***

is printed and the correction card is listed and ignored.

If a correction card of the type —n,m is such that m<n, the message:
¥* LINE NO. DESCENDING *

is printed and the correction card is listed and ignored.

ULr=/099
Rev. 1

SECTION:

UNIVAC 418-1ll RTOS ASSEMBLER ’

PAGE:

15

4.7.

4.8.

4.9.

GENERATION PARAMETERS

When the RTOS system is generated, parameters may be supplied for the assembler.
The assembler parameters are specified in the element CONFIG on a procedure call
of the type:

ART,m mlc prs Its
where:
mlc is the maximum allowed value for any one location counter;
prs is the reserved procedure table size;
Its is the number of modules (6 words) reserved for the label table.

m is the size of procedure or label table expansion in 256-word blocks. If left
blank, m is assumed to be 16 (4096 words).

The assumed (supplied) parameters are:
ART 030000 300 100

Procedure or label table space is expanded as needed in modules of 256*m maximum
words until no space is available. The maximum location counter value is used to
detect program-directed assembly loops (GO directive which does not terminate).

In order to change the assembler generation parameters the symbolic element ARTGEN
must be assembled with the appropriate CONFIG element.

ELEMENT AND PROCEDURE INSERTION

The INSERT directive causes a symbolic element in the library to be included as
part of the assembly. A procedure reference to a procedure entry point not defined
in the program may cause the procedure sample to be inserted from the library.

First, the user RUN library is searched for the element or entry point. If not found,
the system library is searched.

If a procedure entry point is referenced, the entire procedure element, which may
include other procedure samples, is brought into procedure storage. As a result, care
should be taken to ensure that a procedure reference does not cause another procedure
in the same element to be read into storage which has entry points which duplicate
already defined procedure entry points.

LABEL TABLE REFERENCES

Symbolic items are stored in the label table. Whe n a reference is made to a symbolic
item, the label table is searched. If the same symbolic label is used for different
types of symbolic items, the first acceptable definition for the label is used. The
first acceptable reference is determined by the sequence in which the assembler
searches the label table. The sequence is defined in the following paragraphs.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER \ \mmm 4 \ .

16

4.9.1. Operand Field Hierarchy

A symbolic item referenced in the operand field may be a label item, a paraform
reference, a dimensioned label item, or a labeled literal reference. The sequence
in which the assembler searches the label table is:

1. label item
2. paraform item

3. dimensioned label item

4, labeled literal

Example:
oooool /
000002 o0 00pooo RES 10
000003 A LiT
000004 00 00pO12 000013 «A(LLK 10)
000005 $(1),8 LT
000006 o) 00oooo B(1) RES 10
oopoo7 o1 000012 000000 +Btl)
000008 $(2)y¢C Lir
goooo9 [PROC
000010 (i)
000011 *Clol)
pooct2 +C(102)
000013 +C
0oo01 Y END
000o01s 000144 ¢ty EGY 100
000016 02 ©oUoowo 000001 C ct1) ¢

02 o0uUpout 000144

02 000002 000000

02 000003 000002
ogoQl7 $(3),0 LIy
000018 03 000000 RES 10
000019 03 obpoi2 70 0012 D LLk o
000020 000144 0ty EQU 100
oopozi VE 03 00po13 12 ooood LL D(LLK O)
oono022 END

00 000013 70 0042

see SUMMARY wee
PROGRAM SIZE} 00 Vo014 ot 00013 02 Upoo4 03 00014

EXTERNAL OR UNDEFINED REFERENCES! LLK

EXPRESSION ERROQRSI agt

4.9.2. Operation Field Hierarchy

A symbolic label occurring in the operation field may be a ptocedure entry point,
a directive reference, an instruction reference, or a label reference. The assembler
determines the nature of the label as follows:

1. If the field is terminated by a space (blank character), a check is made for an
INFO, LIT, NAME, PROC, FORM, EQU, DO, XCHAR, UNLIST, EVEN, ODD, GO,
GO, RES, END, LIST, INSERT, SKIP, or CHAR directive.

2. If the label is not a directive or if the field terminator is a comma, a check is
made for a procedure entry point.

3. If the field terminator is not a space or commas, the field is assumed to be the
operand field, and one or more data words are generated.

UP-7599
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER 4

SECTION: PAGE:

17

4. A check is made for a FORM reference.
5. A check is made for a mnemonic instruction reference.

6. A check is made for a library procedure entry point; and, if found, the procedure
sample is brought into procedure storage.

7. If none of the forgoing references are satisfied, the field is scanned as an operand
field expression.

The sequence described shows that:

1. A label with a name that is identical to an assembler directive may be used as

a procedure entry point if and only if a comma is used to terminate the operation
field.

2. A procedure entry point or form reference which has the same label as a mnemonic
instruction will supercede the instruction reference unless the procedure entry
point is only defined in the library and not yet brought into procedure storage.

3. A label reference not preceded by a + will cause the procedure library to be
searched prior to assuming a data word generation format.

Example:
00301145 WASM Tam=16é

UNIVAC 418m=111 ASSEMBLY == MAR 17 1970 00:pli45
*sPROCEDURE XCHAR NOT IN LIBRARY = CALLED AT LINE 000010 BY ELEMENT T4=1é
®ePROCEDURE A NOT IN LIBRARY = CALLED AT LINE 000012 BY ELEMENT T4=ié
ooooo! /s
000002 LB FORM Ledaly
000003 00 000DOO 400024 L8 c 190420
000004 CHAR® PRO
000005 LLK CHAR(1,41)
000006 ‘ END
000007 o0 0Uoool 70 0024 CHAR, O Al
000008 CHAR TAY, 6
000009 00 000002 70 0006 CHAR,O TAr
aoool0 ui 00 0Coou3 uoooo0 XCHAK O
000031 00 000004 A RES 5
00001312 00 00001y 000004 A
000013 END

wee SUMMARY eaw
PROGRAM SIZE: oo Qo012
EXTERNAL OR UNUEFINED REFERENCESS XCHAR

INSTRUCTION ERRORS?! 001

UP-7599

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER cerion:

PAGE:

18

Note that a literal contains a line item which begins with the operation field. As a
result, there is a difference between the way that the references in the following
example of

LL (A)
and

LL (A)

are treated because in the first literal, the operation field terminator precludes a
reference to a procedure entry point.

Example:
00:01346 PASM T4=17
UNIVAC 418=1]] ASSEMBLY ==~ MAR 17 1970 00i0li4e

#ePROCEDURE A NOT IN LIBRARY = CALLED AT LINE 000004 BY ELEMENT T4=17
poo00o! /o
0o0u0on2 00 0Uoooo RES 10
ooooo2 [V 00 0Ug0ol2 12 o014 LL CA)
000004 Ul o0 000013 12 0014 LL (A)
000005 END

U 00 000014 voDnooo

eas SUMMARY swe
PROGRAM SIZE? 0o 0ooils
EXTERNAL QR UNDEFINED REFERENCES? A

INSTRUCTION ERRORS:E 001

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

5 1
SECTION: PAGE:

5. COMMAND/ARITHMETIC
SECTION

5.1. GENERAL

In this section, the command/arithmetic section of the UNIVAC 418-III System is
discussed. Since all input/output is normally done through executive requests, these
hardware characteristics are not discussed in this document.

5.2. HARDWARE CHARACTERISTICS

The UNIVAC 418-1II System may contain up to 131,072 addressable words. Each word
consists of 18 bits. Main storage can be thought of as divided into 4096-word segments
called bays.

The address of the instruction being executed is kept in a register called the instruction
address register (IAR).

Eight index registers (B registers) can be used for address modification. The index
registers are memory locations 1 through 10g.

A 6-bit special register (SR) is used to access different bays. Four instructions are
available to load and store the special register.

A 4-bit register called the index register pointer (IRP) contains the address of the
active index register.

When abnormal conditions, such as illegal instructions, arithmetic overflow, or guard
mode violation occur, the operating program is interrupted, and the instruction at a
fixed (preassigned) address is executed.

5.3. DESIGNATORS
m Compare Designator

The compare designator is a bi-stable, three-stage register whose state is determined
by the execution of any of the COMPARE instructions (f = 02,03,06,07). The results
of the COMPARE instructions are recorded by the compare designator as follows:

— The COMPARE stage is set upon the execution of any of the COMPARE instruc-
tions.

— The LESS THAN stage is set if a COMPARE instruction finds (AL) less than
the contents of the addressed memory location (f = 02,03), or [(AU) (AL)] less
than the logical product of (AU) and the contents of the addressed memory location
(f = 06,07).

— The EQUALS stage is set if a COMPARE instruction finds (AL) equal to the
contents of the addressed memory location (f = 02,03) or [(AU) EB (AL)| equal
to the logical product of (AU) and the contents of the addressed memory location
(f = 06,07).

UP-7599
Rev. 1

5

SECTION:

UNIVAC 418-111 RTOS ASSEMBLER '

PAGE:

The COMPARE stage is cleared by the execution of any instruction other than the
arithmetic JUMP instructions (f = 6067). Thus, if the results of a COMPARE instruc-
tion are to be successfully tested, it must be immediately followed by one or more of
the JUMP instructions.

When the COMPARE stage of the compare designator is set, all interrupts are locked
out to avoid the possibility of inadvertently clearing the COMPARE state. It should be
noted that the arithmetic JUMP instructions have significantly different operations if
executed when the COMPARE stage is not set.

m Borrow Designator

The borrow designator is a bi-stable, single-stage element whose state is determined
by the execution of either a double-length ADD instruction (f = 20,21) or a double-
length SUBTRACT instruction (f = 22,23).

If an end-around borrow is required during the execution of either of these instructions,
the end-around borrow is inhibited and the borrow designator is set. The borrow desig-
nator remains set until the subsequent execution of another double-length ADD or
double-length SUBTRACT instruction. ‘

The condition of the borrow designator may be tested by the TEST NO BORROW
instruction (f = 5051). When the borrow designator is set, interrupts are not locked
out.

8 Overflow Designator

The overflow designator is a bi-stable, single-stage element set when an overflow
occurs during the execution of any of the following instructions:

ADD AL (f = 14,15)
SUBTRACT AL (f = 16,17)

ADD A (f = 20,21)

SUBTRACT A (f = 22,23)

DIVIDE A (f = 26,27)

ROUND A (f = 5060)

ADD AL PLUS CONSTANT (f= 71)
FLOATING POINT DIVIDE (f = 5005)

The stage of the overflow designator is tested by either the SKIP ON OVERFLOW
instruction (f = 5053). The execution of either instruction automatically clears the
overflow designator. When the overflow designator is set, interrupts are not locked
out.

® Guard Mode Designator

The guard mode designator is a bi-stable, single-stage element set as a result of
the LGM (f = 5065) instruction. It is cleared by the occurrence of any interrupt.
While the guard mode designator is set, each instruction store cycle is checked.
If the referenced address does not fall within the upper and lower storage limits,
a guard mode interrupt is generated.

UP-7599
Rev. 1

5

SECTION;

UNIVAC 418-11l RTOS ASSEMBLER l

PAGE:

5.4,

INSTRUCTION TYPES AND FORMATS

Instructions are binary numbers formatted in such a manner that when they are trans-
ferred to and interpreted by the command/arithmetic section of the computer, they
result in the execution of a predefined operation. Instructions for the UNIVAC 418-III
System are comprised of two entities, the function field and the operand field. The
contents of the function field informs the c/a section which operation is to be per-
formed; the contents of the operand field supplies the c/a section with the necessary
information to enable it to perform the function. The set of all recognized functions is
referred to as the instruction repertoire.

The UNIVAC 418-III instructions are divided into three distinct categories, referred to
as type I, type II, and type III instructions. Type I instructions are identified by function
codes 02 through 027, 032, 033, and 040 through 047. Type II instructions are identified
by function codes 030, 031, 034 through 037, and 051 through 076. Type III instructions
are identified by function codes 5000 through 5077.

B Type I instructions

The type I instruction format is:

17 12 11 0

where: F is the 6-bit function code.
U is the 12 low-order bits of the operand address.

® Type II instructions

The type II instruction format is:

F UorZz
17 12]11 0

where: F is the 6-bit function code.
U is the 12 low-order bits of the operand address.
Z is the 12 low-order bits of an 18-bit sign extended operand.

When F indicates that the 12 low-order bits are to be interpreted as the actual operand,
an 18-bit operand is formed by using Z and propagating the contents of bit 11 to the high-
order 6 bits. This is commonly referred to as sign extension.

m Type IIl instructions

Type III instructions may be divided into two distinct categories, each with a
slightly different format. They are all categorized by a major function code of 050,
and a minor function code between 0 and 077.

UP-7599
Rev. 1

5 4
SECTION: PAGE:

UNIVAC 418-111 RTOS ASSEMBLER ‘

Type IlI-a

17 1211 6|5 0

where: F is 50g.
M is the minor function code.
K is 0 or a constant less than 64.

Type III-b
F M UNUSED
17 1211 6|5 0
UNUSED | U
17 1211 0

where: F is 50g.
M is the minor function code.
Iis 0 or 1 depending on whether indexing is to be used.
U is the 12 low-order bits of the operand address.

Note that the type III-b instructions are two-word (36-bit) instructions. In addition
to the above formats there are several type III-a instructions which use the contents
of one or more memory locations following their occurrence for specific data. These
are principally the I/O instructions. They transfer control to the memory location
following the data words used by them.

5.5. ADDRESSING

The operand fields of type I, type II, and type III-b instructions contain 12 bits. The
UNIVAC 418-III main storage is logically divided into bays, each containing 4096
18-bit words, and may be expanded to a maximum of 32 bays; therefore, each type I,
type II, or type III-b instruction provides sufficient space to specify any address
within a bay. The bay which contains the desired address is determined by certain
rules outlined in the following discussion.

When an instruction is executed which is in the last storage location of a bay, program
control passes to the first location of the next bay unless it is a skip or jump type
instruction. If it is a skip type instruction, control passes to the first or second
location of the next bay depending on whether or not the skip condition is met. If

it is a jump type instruction, control passes to the storage location specified in the
next bay. This is tantamount to saying that as long as forward jumps are made, it
does not matter where the instruction is located in storage.

In order to enable special-register-sensitive instructions to access any address in
storage, the SR (special register) may be used to specify which bay is to be used.
The special register is active or inactive depending on whether bit 4 is set to 1 or
to 0; bit 4 is not a part of the bay identification. Bits 5 and 3 through 0 of SR are the
bay bits.

UP-7599
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER ceerion, .

Example:
543210

To set the SR active to bay 25 (31g), the binary number 1[1]1]J0]0]1](71g) must
be stored in SR because bit 4 (SR active bit) must be set to 1. The desired address
is derived by ignoring bit 4 and treating bit 5 as though it were in bit position 4. By
doing this, 718 becomes 31g (1110012 > 110012).

543210
To set the SR active to bay 5 (5g), the binary numberLOI II Ol ll 0| ﬂ (25g) must be
stored in SR.

In order to set the special register active to bay 3, the instruction:

LABEL OPERATION OPERAND
10 20 30 40

llllllllAJLISIRIIIIII11052I3!lllllliiil=ll\il1|llllLJ

is executed. To set it active to bay 31 (32nd bay), the instruction:

]llIl‘lllles_lRllllllI|017I7Llllllllillilllil[lll,kl,,LL_J

l[lllllllilllJlillIIIJIII,LIltl‘ll‘!ii;,,JJ‘111‘,.11,,;1.

may be executed.

m Type I Instructions

Type I instructions are SR-sensitive and indexable, meaning that if SR is active,
the bay specified by its contents is accessed, and that the contents of the active
index register are used to modify the operand address if the function code is odd.

If SR is not active (bit 4 is 0), the bay to be accessed is that in which the instruc-
tion itself resides; the bay bits are taken from the five high-order bits of the
instruction address register.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER

SECTION:

PAGE:

If the function code (f) is odd, indexing is specified. This means that the full 18-bit
contents of the active index register are arithmetically added to the (positive) 17-bit
operand address. Figure 5-1 illustrates the various addressing techniques for type I

instructions.

LABEL 10 OPERATION 20 30 OPERAND 40

i SR O v |'1L11sN1E1 N I |
Lo M L 10 0.0, Lo [+ LINE AR i
b LS8R L1023 ALINE 3 L

ORI AT | SRS R 0100 , , ,, 1-LINE B 1 L
IR ! IL_.leRl LLLd L0 LL‘II]N|E1 S 1 L
oo B 1 I(.013.00;0;0,)1 Lol LINE, 6 1 |
TR IN T | SRS A SR 01,00 .. ,LJ_'_J_LII[NIEI fy ZEN T L
O B S N LSRR 0 1020, P LINE 8 1 1
bbb e %0100 . .. 1'|\-1LN|E; 9 L I
Ll LLL__isI Lo L |0|2131 AR | I'lL-_t_LINIEI A i
AT ETETERETE | . VAR L %01 00 . 1A T NE Vb i
S B R | IL|S|R| Lo bt L A L« LINE M2 L
i eB s 16=01,0000), 1 LINE 43 1 .
ik 0100, PLTINE VA !

[TN S S T U U T A O A S |

IIIII|I!

llll’lllill

ll‘lll

Figure 5~1.

Type | Instruction Addressing Techniques

If line 1 were to be located at address 020000, the following storage references would

be made:

LINE NUMBER

EFFECTIVE U

ADDRESS REFERENCED

-0 3 N

1
14

m Type II Instructions

Type II instructions are never SR-sensitive, differing in this respect from type I
instructions. Regardless of the contents of SR, the bay referenced is the one in

0100 + 020000
0100 + 030000
0100 + 020000 + 030000
0100 + 000000 + 030000
0100 + 030000 + 030000
0100 + 020000 — 010000

which the instruction resides.

Some type II instructicns are index-sensitive; this allows them to access other

020100
030100
050100
030100
060100
010100

bays by using the active index register to modify the address obtained by combining

Ujq.0 and IARy7 19

Three instructions (LBK, LLK, and ALK) do not make a second storage access. The

sign-extended value of the operand field is used as the operand.

UP-7599
Rev. 1

SECTION:

UNIVAC 418-1il RTOS ASSEMBLER ‘

PAGE:

5.6.

m Type III Instructions

The type Ill-a instructions do not require an operand. The type IIl-b instructions
resemble the type I instructions; they are SR- and index-sensitive. When I is set
to 1, indexing is used; when it is set to 0, no indexing is used.

STORAGE PROTECTION (GUARD MODE LIMITS)

To ensure program protection, a selected area of storage may be placed under guard
mode limits through the use of the LGM (f = 5065) instruction. When the guard mode

is active, any attempt to store into a storage address outside the range set by the
LGM instruction causes a guard mode interrupt at address 30g. Two nine-bit registers,
storage limits upper and storage limits lower, may be loaded with the upper and lower
bounds of an area of storage to be placed under guard mode. For this purpose, storage
is divided into 256-word blocks. The LGM is a privileged instruction and may not be
used by the programmer. '

When the nine high-order bits of a 17-bit storage address are placed in storage limits
lower, the first address of that block is the lower bound of the guard mode limits.
When the nine high-order bits of a 17-bit storage address are placed in storage limits
upper, the last address of that block is the upper bound of the guard mode limits. For
example, the instruction:

LABEL OPERATION OPERAND
10 20 30 40

lllllillLlGlMllllllllIlllllLlllIll*l!‘ll!l(llli,t

llll]l_.,_il+101217171‘l7[7]Ill)]llll1|]ILI'Xil,L,I‘lI‘LL.‘L,

T S U N T U O U T U U YU TN U YT O O T U VO T OO M O Y W W O

prevents storage outside the range of addresses 077400g to 0137777g; any attempted
violation of this restriction causes a guard mode interrupt instead.

|
1
[
000 111 111 100 000 000 : address 077400
[
[

17 [8!7 0

0177 = Storage-Limits -L.ower Contents

1

1 .

001 011 111 11 111 111 . address 0137777
|
1

17 v_\r\'8/7 0

0277 = Storage-L.imits-Upper Contents

Upon the occurrence of any interrupt, the guard mode designator is cleared (disabled),
so that all of main storage becomes accessible to subroutines gaining control through
the interrupt locations. ‘

Because locations O through 178 are never under guard mode protection, it is always
possible to use them for storage. The index registers are part of that category and are
actually located at addresses 1 through 10g.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER 5

SECTION: PAGE:

5.7.

5.8.

PRIVILEGED INSTRUCTIONS

Privileged instructions are those which are needed by an operating (controlling) system
in order to perform its job; they are considered inappropriate for use in normal (user)
programs. The appearance of any of these instructions in any user program would have
an unpredictable and probably disastrous effect.

When the guard mode designator is set, through the use of an LGM instruction, any
attempt to execute a privileged instruction causes a guard mode interrupt instead. The
privileged instruction is not executed or initiated.

The privileged instructions are:

5011 load input channel (LIC)

5012 load output channel (ILOC)

5013 load external function channel (LFC)
5015 stop input on channel (STIC)

5016 stop output on channel (STOC)

5021 test input channel (TIC)

5022 test output channel (TOC)

5023 test function channel (TFC)

5024 wait for interrupt (WFI)

5025 wait for interrupt (WFI)

5056 stop on key setting (SK) (ignored when in guard mode)
5065 load guard mode (LGM)

5066 set audible alarm (SSA)

5067 enable ESI interrupts (EEI)

FLOATING-POINT NUMBERS

Floating-point numbers are two-word, 36-bit constants; they consist of a fixed-point
part (mantissa) and an exponent (characteristic). The format of a floating point number
is;

35

27 | 26 18 117 0

where:

s is the sign bit.
c is the eight characteristic bits.
m is the 27 mantissa bits.

The mantissa (m) contains the 27 significant bits of the floating-point number. The
magnitude of the mantissa is either 0 or between ‘48 and .7777777778, normalized so
that the most significant bit is a 1. The characteristic is the value of ¢ in the expression
20'2008*m. The high-order bit of ¢ (bit 34) is the sign bit of the characteristic. When
C34:1, the characteristic is positive; when ©34=0, the characteristic is negative. The
sign bit (s) is 0 when the floating-point number is greater than 0 (positive); it is 1

when the number is less than 0 (negative). The magnitude (positive equivalent) of a
negative number is its one’s complement.

UP-7599 :
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER ’

SECTION: PAGE:

For example, the number 2.0 can be rewritten in floating-point form as:

2.0 *100 o
20. * 10-L, or
20 % 101 , and many others.

In these examples, 0, —1, and 1 are the characteristics; 2.0, 20., and .20 are the
mantissas. The three expressions represent the same quantities, illustrating that the
mantissa and characteristic may be manipulated so that the value of the number remains
unchanged. The octal representation of this number is:

2.0 * 100 = .24 * 23

To normalize, the mantissa is multiplied by 2, and the characteristic is decreased
by 1.

The floating-point format is.
002400000000g

Finally, to indicate that the power of the characteristic is positive, the characteristic
is biased to obtain 2024000000008. In the same manner, —2.0 is represented as
5753777777778.

5.9. INTERRUPTS

Interrupts are internally generated signals which cause the c/a section to interrupt

its normal sequence of instructions (governed by instruction address register contents),
and to take the next instruction from a predetermined address in main storage. The
contents of the IAR are not changed until the interrupt instruction is executed. An

SLJ or SLJI instruction is placed in the interrupt locations, which captures the value
of IAR in order to allow normal processing to continue when the interrupt processing
coding is completed.

UP-7599 6
Rev. 1 UNIVAC 418-11i RTOS ASSEMBLER cecrion:

PAGE:!

B. INSTRUCTION REPERTOIRE
DESCRIPTION

6.1. SYMBOL CONVENTIONS

The following is a list of the ‘‘shorthand’’ symbols used in the repertoire description.
The meaning each symbol conveys appears to the right of the symbol.

AU Upper accumulator, 18-bit arithmetic register

AL Lower accumulator, 18-bit arithmetic register

A AU and AL linked together to form one 36-bit arithmetic register

B Eight index registers with seven residing in main storage and the currently active index

register in a flip-flop register

f Function code, six high-order bits of all instruction words

F Function register; seven bits

k Designator contained in type 1 instruction words; six bits

m Minor function code contained in type Il instruction words; six bits
M)Ly + B, Ly (AU, or [(y + (B)) (AU)) of compare instructions
Ni Next instruction

P or

1AR Program address register; 17 bits (or instruction address register)
SR Special register; five bits, plus one active hit

IRP Index register pointer; 3 bits

U 12 low-order bits contained in type | and type il instructions

Up U prefaced with the core storage segment designator bits of P (P1g.12)
Usr U prefaced with the core storage segment designator bits of SR (SR 3-0)

n) Contents of the nth bit of a register
y—1,y) Contents of two consecutive memory locations linked together to form a 36-hit word. Address
y ~ 1 contains the most significant half of the word; y contains the least significant half of
the word.
: Indicates COMPARISON when used in logical expressions.
() () Bit-by-bit or fogical product (logical AND) defined by the foilowing table:

y Either an address formed by UP or USR plus U11—0 or a constant formed by Uwith sign
extension.

() Contents of an address or register

()i Initial contents of an address or register

()¢ Final contents of an address or register

(

(

01
0jo o
1]01

() A () Logical sum (inclusive OR) defined by the following table:

01
0o 1
1111
() One's complement of the contents of an address or register
) () Algebraic product of the contents of two locations
- Transfer o f the quantity stated at the left of the symbol to the address or register stated at

the right of the symbol
[] Used to group terms. The brackets do not indicate ‘‘the contents of'’,

UP-7599

Rev. 1 UNIYAC 418-11l RTOS ASSEMBLER ‘ 6

SECTION: PAGE:

6.2. INSTRUCTION REPERTOIRE

The instruction repertoire for the UNIVAC 418-1I1 Assembler is described in this
section. The instructions are listed and defined in the following format:

Octal Code Instruction Name Mnemonic

Operation performed (Symbolic summary)
Definition of the y address or constant
Test defining the instruction

Examples or notes, where necessary

Common usage and example cases are included where necessary to supplement the
description; however, no attempt is made in these descriptions to indicate motre
sophisticated uses for any of the instructions.

6.2.1. Supervisor Call Instructions

Several function codes are not assigned a specific function. These are called
supervisor call instructions because when executed they cause a supervisor call
interrupt at location 20g. Depending on software conventions, the RTOS may
perform certain software functions when encountering these illegal function codes.

The supervisor call functions are:
00,01,077

Execution Time: 0.75 usec, and
5000,5001,5077

Execution Time: 1.00 usec.
6.3. TYPES I AND II INSTRUCTIONS
-02 COMPARE LOWER (CL)
Operation: (AL): (y)
Execution Time: 1.50 usec.
y=Up or Ugp + Uii.0
The COMPARE stage of the compare designator is set.

This instruction compares the contents of AL algebraically with the contents of
y and the compare designator is set as follows:

1. The LESS THAN stage is set if (AL) < (y).
2. The EQUAL stage is set if (AL) = (y).

The contents of AL remain unchanged and in AL. (AL)f = (AL)i.

UP-7599
Rev. 1

6 3
SECTION: PAGE:

UNIVAC 41811l RTOS ASSEMBLER l

NOTES:

B —-0<+0

m The COMPARE stage is cleared by the execution of any instruction other than
the arithmetic jump instructions (f = 6067). Thus, if the result of a COMPARE
instruction is to be successfully tested, it must be immediately followed by
one or more of the conditional jump instructions.

B Arithmetic jump instructions have significantly different operations if executed
when the COMPARE stage is not set,

8 When the COMPARE stage of the compare designator is set, all interrupts are
locked out to avoid the possibility of inadvertently clearing the COMPARE
stage,

03 COMPARE LOWER (CL*)
Operation: (AL) : (y + (B))
Execution Time: 1.50 usec.
y=UporUsg + U1
The COMPARE stage of the compare designator is set,

This instruction compares the contents of AL algebraically with the contents of
y +:(B) and the compare designator is set as follows:

1. The LESS THAN stage is set if (AL)< (y + (B)).

2. The EQUAL stage is set if (AL) = (v + (B)).

The contents of AL remains unchanged and in AL. (AL)¢ = (AL);.
NOTES:

B -0<+0

8 The COMPARE stage is cleared by the execution of any instruction other than
the arithmetic jump instructions (f = 6067). Thus, if the result of a COMPARE
instruction is to be successfully tested, it must be immediately followed by one
or more of the conditional jump instructions.

B Arithmetic jump instructions have significantly different operation if executed
when the COMPARE stage is not set.

8 When the COMPARE stage of the compare designator is set, all interrupts are
locked out to avoid the possibility of inadvertently clearing the COMPARE
stage.

UP-7599
Rev. 1

; o
UNIVAC 418-11l RTOS ASSEMBLER ‘ \S’ECT.ON, \ rees

04

05

MASKED SELECTIVE LOAD (MSL)

Operation: [(AU) (AL)] B [(AU) (y)l- AL
Execution Time: 1.50 usec.

y=UporUgg+ U1

This instruction replaces the individual bits of AL with bits of the contents of
y corresponding to 1’s in AU, leaving the remaining bits of AL unaltered. If
(AU)n =1, then (y)n—> AL,.

The contents of AU remain unchanged and in AU. (AU)f = (AU)i.

Example: (AU), = 007777 — Mask
(y) =123451
(AL), = 666666
(AL) = 663451

NOTES:

m A mask of positive zero does not change AL. (AL); = (AL);

B A mask of negative zero results in the transfer of the contents of y to AL.
(AL) = (y)

MASKED SELECTIVE LOAD (MSL*)
Operation: [(AU) (AL) @R [(AU) (y + (B))] - AL

Execution Time: 1.50 usec.
y=UporUsg + Us1.0

This instruction replaces the individual bits of AL with bits of the contents of
y + (B) corresponding to 1’s in AU, leaving the remaining bits of AL unaltered.
If (AU), = 1, then (y + (B)), » AL.

The contents of AU remain unchanged and in AU. (AU)f = (A-U)i
NOTES:

® A mask of positive zero does not change AL. (AL); = (AL);

8 A mask of negative zero results in the transfer of the contents of y + (B) to AL.
(AL); = (y + (B))

LS Tl RV b o

Rev. 1

SECTION:

UNIVAC 418-11l RTOS ASSEMBLER i

PAGE:

06 COMPARE LOWER MASKED BY UPPER (CLM)

Operation: [(AU) (AL)] : [(AU)]
Execution Time: 2.00 usec.

y=UporUsg+ U1

The COMPARE stage of the compare designator is set.

This instruction compares selected bits of AL with corresponding bits of the
contents of y by logically multiplying AU by AL and by the contents of y and
algebraically comparing the two resultants. The compare designator is set as
follows:

1. The LESS THAN stage is set if [(AL) AW < [(y) (AU)]

2. The EQUAL stage is set if [(AL) EXE (AU)] =[(y) (AU)]

The contents of AL remain unchanged and in AL. The contents of AU remain
unchanged and in AU. (AL)f = (AL)i and (AU)f = (AU)i

Example:

(AU); = 007777 — Mask
(y) = 123451

(AL); = 222351

COMPARE 2351 with 3451

(AU)= 007777

(AL);= 222351

NOTES:

B -0<+0

® The COMPARE stage is cleared by the execution of any instruction other
than the arithmetic jump instructions (f = 6067). Thus, if the result of a
COMPARE instruction is to be successfully tested, it must be immediately
followed by one or more of the conditional jump instructions.

B Arithmetic jump instructions have significantly different operations if executed

when the COMPARE stage is not set.

® When the COMPARE stage of the compare designator is set, all interrupts are

locked out to avoid the possibility of inadvertently clearing the COMPARE
stage.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER l

SECTION:

PAGE:

07

10

COMPARE LOWER MASKED BY UPPER (CLM*)
Operation: [(AU) BRE (AL)] : [(AU) (y + (B
Execution Time: 2.00 usec.

y=UporUgr+ Ui1 g

The COMPARE stage of the compare designator is set.

This instruction compares selected bits of AL with corresponding bits of the
contents of y + (B) by logically multiplying AU by AL and by the contents

of y +(B) and algebraically comparing the two resultants. The compare designator
is set as follows:

1. The LESS THAN stage is set if [(AL) AUl < [(y + B)) (AU)]
2. The EQUAL stage is set if [(AL) (AU)] = [(y + B)) (AU)]

The contents of AL remain unchanged and in AL. The contents of AU remain
unchanged and in AU. (AL); = (AL); and (AU); = (AU);.

NOTES:
a —-0<+0

® The COMPARE stage is cleared by the execution of any instruction other than
the arithmetic jump instructions (f = 6067). Thus, if the result of a COMPARE
instruction is to be successfully tested, it must be immediately followed by
one or more of the conditional jump instructions.

B Arithmetic jump instructions have significantly different operations if executed
when the COMPARE stage is not set.

m When the COMPARE stage of the compare designator is set, all interrupts are
locked out to avoid the possibility of inadvertently clearing the COMPARE
stage.

LOAD AU (LU)

Operation: (y) » AU

Execution Time: 1.50 usec.
y=UporUggp+Ui1g

Clear AU.

This instruction transfers the contents of y to AU.

The contents of y remain unchanged and in y. (y) = (v);

6

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

PAGE:

Ul-/5YY
SECTION:

11 LOAD AU (LU*)
Operation: (y + (B)) > AU
Execution Time: 1.50 usec.
y=UporUgp+ Uy g
Clear AU.
This instruction transfers the contents of y + (B) to AU.

The contents of y + (B) remain unchanged and in y + (B). (y + (B) =+ ®B))i

12 LOAD AL (LL)
Operation: (y) > AL
Execution Time: 1.50 usec.
y=UporUsg+ Ui
Clear AL.
This instruction transfers the contents of y to AL.

The contents of y remain unchanged and in y. 0 =)

13 LOAD AL (LL*)
Operation: (y + (B)) > AL
Execution Time: 1.50 usec.
y=UporUgg + U
Clear AL.
This instruction transfers the contents of y + (B) to AL.

The contents of y + (B) remain unchanged and in y+ B). (y + (B) = (v + (B))i

14 ADD TO LOWER (AL)
Operation: [(y) + (AL)} » AL
Execution Time: 1.50 usec.
y=UporUsg+Uirg

This instruction adds the contents of y to the contents of AL and places the
resultant, SUM, in AL.

The contents of y remain unchanged and in y. (v = (v)

UP-7599
Rev. 1

6

\ SECTION: PAGE:

UNIVAC 418-111 RTO§ ASSEMBLER \

15

16

NOTES:

m If the contents of AL is negative 0 and the contents of y is negative 0, the
result of the addition is negative 0.

(AL) = I’s if (AL); = 1’s and (y) = 1’s

® The results of addition involving all other possible combinations of positive
and negative 0 are positive 0.

m If the magnitude of the resultant is too large for AL to hold, that is, the sum
exceeds the range —377777g to +377777g, the result is incorrect and the overflow
designator is set. The state of the overflow designator is tested by either the
SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO OVERFLOW
instruction (f = 5053). The execution of either of these two instructions clears
the overflow designator.

ADD TO LOWER (AL*)

Operation: [(y + (B)) + (AL)] » AL
Execution Time: 1.50 usec.
y=Up or Usr + U110

This instruction adds the contents of y + (B) to the contents of AL and stores the
SUM in AL.

The contents of y + (B) remain unchanged andiny + (B). (y + (B)) = (v + (B));
NOTES:

m If the contents of AL is negative 0 and the contents of y + (B) is negative 0,
the result of the addition is negative 0.

B The results of addition involving all other possible combinations of positive
and negative 0 are positive 0.

m If the magnitude of the resultant is too large for AL to hold, that is, the sum
exceeds the range —3777778 to +3777778, the result is incorrect and the
overflow designator is set. The state of the overflow designator is tested by
either the SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO
OVERFLOW instruction (f = 5053). The execution of either of these two
instructions clears the overflow designator.

ADD NEGATIVELY TO LOWER (ANL)
Operation: [(AL) — (y)] » AL
Execution Time: 1.50 usec.
y=UporUggr + Uj1.0

This instruction subtracts the contents of y from the contents of AL and places
the resultant, DIFFERENCE, in AL.

The contents of y remain unchanged and in y. (y) = (y);

UP-7599
Rev. 1 UNIVAC 418-1I1l RTOS ASSEMBLER

6
lSECTION: PAGE:

NOTES:

m If the contents of AL is negative 0 and the contents of y is positive 0, the
result of the subtraction is negative 0. (AL)f = 1’s if (AL); = 1’s and (y) = 0’s.

m The results of subtraction involving all other possible combinations of positive
and negative 0 are positive 0.

m If the magnitude of the resultant is too large for AL to hold, that is, the difference
exceeds the range —377777g to +377777g, the result is incorrect and the overflow
designator is set. The state of the overflow designator is tested by either the
SKIP ON OVERFLOVW instruction (f = 5052) ot the SKIP ON NO OVERFLOW
instruction (f = 5053). The execution of either of these two instructions clears
the overflow designator.

17 ADD NEGATIVELY TO LOWER (ANL*)
Operation: [(AL) — (y + (B))] » AL
Execution Time: 1.50 usec.

y = UP or USR + U11_0

This instruction subtracts the contents of y + (B) from the contents of AL and
places the tesultant, DIFFERENCE, in AL.

The contents of y + (B) remain unchanged and iny + (B). (y + (B))f = (y + (B));

NOTES:

m If the contents of AL is negative 0, and the contents of y + (B) is positive
0, the result of the subtraction is negative 0. (AL); = 1’s if (AL); = 1’s and

(y+ (B))=0s.

B The results of subtraction involving all other possible combinations of positive
and negative 0 are positive 0.

m If the magnitude of the resultant is too large for AL to hold, that is, the difference
exceeds the range —377777g to +377777g, the result is incorrect and the over-
flow designator is set. The state of the overflow designator is tested by either
the SKIP ON OVERFLOW instruction (f = 5052) or SKIP ON NO OVERFLOW
instruction (f = 5053). The execution of either of these two instructions clears
the overflow designator.

UP-7599
Rev. 1

6

SECTION:

UNIVAC 418-111 RTOS ASSEMBLER ‘

PAGE!

10

20

ADD TO A (AA)

Operation: [(A) + (y—=1,y)I- A

Execution Time: 3.00 usec.

y=UporUgg + Upg.9

The borrow designator is cleared to zero.

This instruction is executed by combining the AU and AL registers into a 36-bit
accumulator, the A register. The contents of y—1 and y are treated as one 36-bit

word, a double-length signed binary number. The contents of y—1, y are added to
the contents of A and the resultant, SUM, is placed in A.

The contents of y—1, y remain unchanged and in y—1, y. (y—=1,y)¢ = (y-1,y)

Example:

y =-07507

(A); = 201007430145

(07507) = 351123 (least significant half)
(07506) = 077430 (most significant half)
(A)f = 300440001270

NOTES:

B The least significant half of the 36-bit number is in y; the most significant
half of the 36-bit number is in y—1. The sign of the 36-bit double-length
number is indicated by the most significant bit of (y—1).

® The operating characteristics of double-length arithmetic operations are the
same as those for single-length arithmetic operations, except that any borrow
for AL comes from AU.

If an end-around borrow for AU is required, it is inhibited and the borrow
designator is set, indicating that the result left in A is too large by 1 and
must be corrected. This condition is tested by the TEST NO BORROW instruction
(f = 5051). The borrow designator is cleared only by the execution of another
ADD TO A (f = 20,21) or ADD NEGATIVE TO A (f = 22,23) instruction.

® If the contents of A is negative 0 and the contents of y—1,y is negative 0,
the result of the addition is negative 0. (A) = Vs if (A); = I’s and (y—1,y) = I’s

m The results of addition involving all other possible combinations of positive
and negative Q are positive 0.

® If the magnitude of the resultant is too large for A to hold, that is, the sum
exceeds the range —3777777777778 to +3777777777778, the result is incorrect
and the overflow designator is set. The state of the overflow designator is
tested by either the SKIP NO OVERFLOW instruction (f = 5052) or the SKIP
ON NO OVERFLOVW instruction (f = 5053). The execution of either of these two
instructions clears the overflow designator.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER : 6 - 11

SECTION:

21

ADD TT A (AA¥)

Operation: [(A)+ (y+ (B) -1,y + (B)] > A
Execution Time: 3.00 usec.

y=Up or USR + U11-0

The borrow designator is cleared to zero.

This instruction is executed by combining the AU and AL régisters into a 36-bit
accumulator, the A register. The contents of y+ (B)and y + (B)~1 are treated as

- one 36-bit word, a double-length signed binary number. The contents of v + (B)-1,

y + (B) are added to the contents of A and the resultant, SUM, is placed in A.

The contents of y + (B)-1, y + (B) remain unchanged and in y + (B)-1, y + (B).
y+®B)-1,y+ B)p=(+ ®B-1,y+ B);

NOTES:

The least significant half of the 36-bit number is in y + (B); the most signifi-
cant half of the 36-bit number is y + (B)=1. The sign of the 36-bit double-
length number is indicated by the most significant bit of (y + (B)=1).

B The operating characteristics of double-length arithmetic operations are the
same as those for single-length arithmetic operations, except that any borrow for
AL comes from AU.

8 If an end-around borrow for AU is required, it is inhibited, and the borrow
designator is set indicating that the result left in A is too large by 1 and must

- be corrected. This condition is tested by the TEST NO BORROW instruction
(f =.5051). The borrow designator is cleared only by the execution of another
ADD TO A (f = 20,21) or ADD NEGATIVELY TO A (f = 22,23) instruction,

m If the contents of A is negative 0 and the contents of y—1,y is negative 0, the
result of the addition is negative 0. (A)f = 1’s if (A); =1’s and (y + (B)-1,y
+(B)) =1’s

® The results of addition involving all other possible combinations of positive
and negative 0 are positive 0.

B If the magnitude of the resultant is too large for A to hold, that is, the sum
exceeds the range =377777g to +377777g, the result is incorrect and the
overflow designator is set. The state of the overflow designator is tested by
either the SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO
OVERFLOVW instruction (f = 5053). The execution of either of these two
instructions clears the overflow designator.

UP-7599
Rev. 1

6 12

PAGE: .

‘ SECTION:

UNIVAC 418-11l RTOS ASSEMBLER \

22 ADD NEGATIVELY TO A (ANA)
Operation: [(A) — (y—1,y)] A
Execution Time: 3.00 usec.
y=UporUsg + Ut1.0
The borrow designator is cleared.to zero.
This instruction is executed by combining the AU and AL registers into a 36-bit
accumulator, the A register. The contents of y—1 and y are treated as one 36-bit
word, a double-length signed binary number. The contents of y—1,y are subtracted
from the contents of A and the resultant, DIFFERENCE, is placed in A.
The contents of y—1,y remain unchanged and in y-1,y. (y-1,y)¢ = (y=1,y)
Example:
y = 07507

(A); = 201007430145

(07507) = 351123 (least significant half)
(07506) = 077430 (most significant half)
(A) = 101357057022

NOTES:

B The least significant half of the 36-bit number is in y; the most significant
half of the 36-bit number is in y—1. The sign of the 36-bit double-length
number is indicated by the most significant bit of (y—1).

m The operating characteristics of double-length arithmetic operations are the
same as those for single-length arithmetic operations, except that any borrow
for AL comes from AU,

® If an end-around borrow for AU is required, it is inhibited and the borrow
designator is set, indicating that the result left in A is too large by 1 and must
be corrected. This condition is tested by the TEST NO BORROW instruction
(f = 5051). The borrow designator is cleared only by the execution of another
ADD TO A (f = 20,21) or ADD NEGATIVELY TO A (f = 22,23) instruction.

s If the contents of A is negative 0 and the contents of y—1,y is positive 0,
the result of the subtraction is negative 0. (A)f = U’s if (A); = 1’s and
(y=1,y) = 0’s

@ The results of subtraction involving all other possible combinations of positive
and negative 0 are positive O.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER = . l

6

SECTION:

PAGE:

13

23

If the magnitude of the resultant is too large for A to hold, that is, the difference
exceeds the range —377777777777g to +377777777777g, the result is incorrect
and the overflow designator is set. The state of the overflow designator is
tested by either the SKIP ON OVERFLOW instruction (f = 5052) or the SKIP

ON NO OVERFLOW instruction (f = 5053). The execution of either of these

two instructions clears the overflow designator.

ADD NEGATIVELY TO A (ANA™)
Operation: [(A) — (y + (B) =1,y + (B)l- A
Execution Time: 3.00 usec.
y=UporUsg+Ui1g

The borrow designator is cleared to zero.

This instruction is executed by combining the AU and AL registers into a 36-bit
accumulator, the A register. The contents of y + (B) — 1 and y + (B) are treated
as one 36-bit word, a double-length signed binary number. The contents of
y + (B)-1, y + (B) are subtracted from the contents of A and the resultant,

DIFFERENCE, is placed in A.

The contents of y + (B)-1, y = (B) tremain unchanged and in y + (B)-1, y + (B).
(y+ B)-1,y+ (B))y=(+ B)-1y+ B))

NOTES:

m The least significant half of the 36-bit number is in y + (B); the most signi-
ficant half of the 36-bit number is in y + (B)—1. The sign of the 36-bit double-
length number is indicated by the most significant bit of (y + (B)=1).

®m The operating characteristics of double-length arithmetic operations are the
same as those for single-length arithmetic operations, except that any borrow
for AL comes from AU.

® If an end-around borrow for AU is required, it is inhibited, and the borrow
designator is set indicating that the result left in A is too large by 1 and must
be corrected. This condition is tested by the TEST NO BORROW instruction
(f = 5051). The borrow designator is cleared only by the execution of another
ADD TO A or ADD NEGATIVELY TO A instruction.

® If the contents of A is negative 0 and the contents of y + (B)—1, y + (B) is
positive 0, the result of the subtraction is negative 0. (A); = I’s if (A)i =1’s
and (y—1,y) = 0’s.

B The results of subtraction involving all other possible combinations of positive
and negative 0 are positive 0.

If the magnitude of the resultant is too large for A to hold, that is, the difference

exceeds the range —3777777777778 to +377777777777é,’ the result is incorrect

and the overflow designator is tested by either the SKIP ON OVERFLOW instruc-

tion (f = 5052) or the SKIP ON NO OVERFLOW instruction (f = 5053). The
execution of either of these two instructions clears the overflow designator.

UP-7599
Rev. 1

UNIVAC 418-1il RTOS ASSEMBLER l

SECTION: PAGE:

14

24 MULTIPLY (M)
Operation: [(AL) x (y)] » A

Execution Time: 6.50 usec. — Numbers of like signs
7.375 usec. — Numbers of unlike signs

y=UporUsg + U119

This instruction multiplies the contents of AL by the contents of y and the resultant,
PRODUCT, is placed in the 36-bit accumulator, the A register, consisting of AU
and AL.

The contents of y remain unchanged and in y.)¢ = ()

NOTES:

B The results of multiplication involving all possible combinations of positive
and negative 0 are positive 0.

m If the most significant half of the product is 17 bits or smaller, it is contained
in AL with leading 0’s in cases of positive products and leading 1’s in cases
of negative products. ALy~ contains the proper sign.

Examples:

Positive Product

(AL) 0000035 = +3

(¥) 000004g = +4

(A) = (AU) + (AL) = 0000005 + 0000144

Negative Product

(AL) = 777774g = -3

() 0000045 = +4

(A) (AU) + (AL) = 777777g + 7777634

1

11

® If the most significant half of the product is exactly 18 bits long, it fills AL
and the sign is carried by AU. For positive products, AU contains all 0’s; for
negative products, AU contains all 1’s. AL~ does not contain the proper sign
but, rather, the most significant bit of the product.

Examples:

Positive Product

(AL) = 000725¢
(y) = 0007414
(A) = (AU)+ (AL) = 000000g + 670465

Negative Product

(AL) = 777052¢ = —725¢

(y) = 000741g

(A) = (AU)+ (AL) = 777777g + 1073128

B No overflow is possible with this instruction because the number of bits in
the product cannot exceed the number of bits in the multiplicand plus the
number of bits in the multiplier.

UP-7599
Rev. 1

SECTION:

UNIVAC 418-11l RTOS ASSEMBLER I

PAGE:

15

25

26

MULTIPLY (M*)
Operation: [(AL)x (y + (B))] » A

Execution Time: 6.50 usec. — Numbers of like signs
7.375 usec. — Numbers of unlike signs

y = Up or USR + U11_0

This instruction multiplies the contents of AL by the contents of y + (B) and the
resultant, PRODUCT, is placed in the 36-bit accumulator, the A register, consisting
of AU and AL.

The contents of y + (B) remain unchanged and in y + (B). (y + (B))g = (v + (B));

NOTES:

m The results of multiplication involving all possible combinations of positive
and negative 0 are positive 0.

m If the most significant half of the product is 17 bits or smaller, it is contained
in AL with leading 0’s in cases of positive products and leading 1’s in cases
of negative products. ALy, contains the proper sign.

m If the most significant half of the product is exactly 18 bits long, it fills AL
and the sign is carried by AU. For positive products, AU contains all 0’s; for
negative products, AU contains all 1’s. AL~ does not contain the proper sign

but, rather, the most significant bit of the product.

® No overflow is possible with this instruction because the number of bits in the
product cannot exceed the number of bits in the multiplicand plus the number of
bits in the multiplier.

DIVIDE (D)

Operation: [(A) + (y)] > AL; Remainder - AU

Execution Time: 6.50 usec. — Numbers of like signs
7.375 usec. — Numbers of unlike signs

y=UporUgg + U1

This instruction divides the contents of A by the contents of y. The QUOTIENT
is placed in AL and the REMAINDER is placed in AU.

The contents of y remain unchanged and in y. (y)f = (y);

UP-7599
Rev. 1

6 16
SECTION: PAGE:

UNIVAC 418-1I1l RTOS ASSEMBLER I

NOTES:

8 The results of division involving all possible combinations of positive and
negative 0 are positive 0.

8 The remainder always bears the sign of the dividend with the results satisfying
the relationship: DIVIDEND = QUOTIENT x DIVISOR + REMAINDER

® If the dividend and the divisor have like signs, the quotient is positive. If
they have unlike signs, the quotient is negative.

Examples:
Divisor Dividend Quotient Remainder
+4 +5 +1 +1
—4 +5 -1 +1
+4 -5 -1 -1
-4 -5 +1 -1

If the magnitude of the quotient is too large for AL to hold, that is, the quotient
exceeds the range —3777778 to +3777778, the result is incorrect and the overflow
designator is set. The state of the overflow designator is tested by either the
SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO OVERFLOW
instruction (f = 5053). The execution of either of these two instructions clears
the overflow designator.

27 DIVIDE (D*)
Operation: [(A) = (y + (B))] » AL; Remainder - AU

Execution Time: 6.50 usec. — Numbers of like signs
7.375 usec. — Numbers of unlike signs

y = Up or USR + U11_0

This instruction divides the contents of A by the contents of y + (B). The
QUOTIENT is placed in AL and the REMAINDER is placed in AU.

The contents of y remain unchanged and in y. v+ B)g=(y + B))

NOTES:

B The results of division involving all possible combinations of positive and
negative 0 are positive 0.

B The remainder always bears the sign of the dividend with the results satisfying
the relationship: DIVIDEND = QUOTIENT x DIVISOR + REMAINDER

B If the dividend and the divisor have like signs, the quotient is positive. If they
have unlike signs, the quotient is negative.

UP-7599
Rev. 1

SECTION:

UNIVAC 418-111l RTOS ASSEMBLER |

PAGE:

17

30

Examples:
Divisor Dividend Quotient Remainder
+4 +5 +1 +1
-4 +5 -1 +1
+4 -5 -1 -1
—4 -5 +1 -1

B If the magnitude of the quotient is too large for AL to hold, that is, the quotient
exceeds the range =377777g to +377777g, the result is incorrect and the overflow
designator is set. The state of the overflow designator is tested by either the
SKIP ON OVERF LOW instruction (f = 5052) or SKIP ON NO OVERFLOW instruc-
tion (f = 5053). The execution of either of these two instructions clears the
overflow designator.

STORE LOCATION AND JUMP INDIRECT (SLJI)
Operation: [(P)+ 1] > (y); [(y) + 1] - P
Execution Time: 2.25 usec.

vy=Up+Upgp

This instruction stores the current program address +1 at the address defined by
the contents of y. The contents of y are increased by 1, and the new address is
transferred to the P register.

Example of an indirect return jump executed from address 002000g:

INITIAL FINAL

ADDRESS CONTENTS CONTENTS EXPLANATION

0020004 30 65004 30 65004 Execute subroutine from main program

006500¢ 71 74204 71 7420g Constant defining location of desired
subroutine

317420¢ 37 2164g 00 2001g Subroutine exit address

3174218 ——————— 00 2001g Subroutine entrance address (control
is transferred here from indirect return
jump)

The effect of the above sequence upon execution of the indirect return jump at
address 0020004 is to transfer control to the subroutine starting at 17421g, while
at the same time letting the subroutine know where to return control.

NOTE:

This instruction together with the jump indirect instruction provides the means
needed for jumping to and from subroutines.

UP-7599
Rev. 1

18

UNIVAC 418-111 RTOS ASSEMBLER .

SECTION: PAGE:

31

32

33

34

STORE LOCATION AND JUMP INDIRECT (SLJI*)
Operation: [(P)+ 1] > (v + (B)); [(y + (B)) + 11-P
Execution Time: 2.25 usec.

y=Up+ U190

This instruction stores the current program address +1 at the address defined by
the contents of y + (B). Then the contents of y are increased by 1 and the new
address is transferred to P.

NOTE:

This instruction together with the jump indirect instruction provides the means
needed for jumping to and from subroutines.

LOAD B REGISTER (LB)
Operation: (y)-» B
Execution Time: 1.50 usec.
y=UporUsr + Us1.0

This instruction transfers the contents of y to B specified by IRP. The full
18 bits of y are transferred to B.

The contents of y remain unchanged and in y. (y); = (v);

LOAD B REGISTER (LB*)
Operation: (y + (B))» B
Execution Time: 1.50 usec.
y=Up orUgg * U110

This instruction transfers the contents of y + (B) to B specified by IRP. The full
18 bits of y + (B) are transferred to B.

The contents of y remain unchanged and in y. (y + (B))f = (v + (B));
JUMP (J)

Operation: y > Pyy g

Execution Time: 0.75 usec.

y=Up+ Ut19

This instruction passes program control unconditionally to the location specified
by y.

Since only the word address is specified by y and the storage segment address is
specified by Pyg_yo, program control remains within the current storage segment.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER ‘ l

SECTION:

PAGE:

19

35

36

37

Example:
P16-12 = 038 and y = 67128

When the instruction is executed, P = 0367128, and control passes to location
036712.

JUMP (J*)

Operation: y + (B) » Py
Execution Time: 0.75 usec.
y=Up+ Ut

This instruction passes program control unconditionally to the location specified
by y + (B).

Since the word address is specified by y + (B), the storage segment address
specified by Py¢ 1o could be modified causing program control to pass to a new
location in another storage segment.

LOAD B REGISTER WITH ““KONSTANT"’ (LBK)
Operation: y > B
Execution Time: 0.75 usec.

y = U (sign extended to 18 bits)

This instruction transfers the contents of y to B specified by the index register
pointer (IRP). The contents of y is the low-order 12 bits of this instruction Uyq g
extended to 18 bits by the repetition of bit 11 in bit positions 17 through 12.

Example:

Uy1.0=7701g
(B); = any value
(B)g = 777701¢

NOTE:

Uyq_g is the 12-bit number contained within the instruction; it does not refer to
an address.

LOAD B REGISTER WITH “‘KONSTANT’” (LBK*)
Operation: y+ (B)» B
Execution Time: 0.75 usec.

y = U (sign extended to 18 bits)

This instruction transfers the contents of y + (B) to B specified by IRP. The
contents of y are the low-order 12 bits of this instruction, Uy1 g, extended to
18 bits by the repetition of bit 11 in bit positions 17 through 12.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER ‘

SECTION:

PAGE:

20

40

41

42

43

The effect of this instruction is to change the contents of B by incrementally
increasing or decreasing B.

NOTE:

Uj1_g is the 12-bit number contained within the instruction; it does not refer
to an address.

CLEAR Y (CY)

Operation: 0 - y

Execution Time: 1.50 usec.

y=Up or Ugp + Ui1.0

This instruction stores an 18-bit word of 0’s at storage address y.
CLEAR Y (CY*)

Operation: 0 - y + (B)

Execution Time: 1.50 usec.

y=UporUgr + U110

This instruction stores an 18-bit word of 0’s at storage address y + (B).
STORE B REGISTER (SB)

Operation: (B) >y

Execution Time: 1.50 usec.

y=UporUggp+ Ujg g

This instruction transfers the contents of B, specified by IRP, to the storage
address y.

The contents of B, specified by IRP, remain unchanged and in B. (B)f = (B)i
STORE B REGISTER (SB*)

Operation: (B) » y + (B)

Execution Time: 1.50 usec.

y=Up or Ugp + Uit

This instruction transfers the contents of B, specified by IRP, to the storage
address y + (B).

' The contents of B, specified by IRP, remain unchanged and in B. (B) = (B);

UP-7599
Rev. 1

6

‘ SECTION:

UNIVAC 418-111l RTOS ASSEMBLER l

PAGE:

21

44

45

46

47

51

STORE AL (SL)

Operation: (AL) >y
Execution Time: 1.50 usec.
y=UporUsr+ U1

This instruction transfers the contents of AL to the storage address y. The contents
of AL remain unchanged and in AL. (AL); = (AL);

STORE AL (SL*)
Operation: (AL)- y + (B)
Execution Time: 1.50 usec.
y="UporUsg + U119

This instruction transfers the contents of AL to the storage address y + (B). The
contents of AL remain unchanged and in AL. (AL)¢ = (AL),

STORE AU (SU)

Operation: (AU) -y
Execution Time: 1.50 usec.
y=UporUggr+ U1

This instruction transfers the contents of AU to the storage address y. The contents
of AU remain unchanged and in AU. (AU); = (AU);

STORE AU (SU*)

Operation: (AU) > y + (B)

Execution Time: 1.50 usec.

y=UporUgr + Uy

This instruction transfers the contents of AU to the storage address y + (B).
The contents of AU remain unchanged and in AU. (AU); = (AU);

INCLUSIVE OR (OR)

Operation: [(AL) ER (y)] - AL

Execution Time: 1.50 usec.

y="Up+ U110

Each bit in y is logically added to cortesponding bits in AL and the 18 independent
logical sums are placed in AL. This is a bit-by-bit INCLUSIVE OR. For each bit

in y that equals 1, set the corresponding bit in AL to 1. For each bit that equals 0,
the corresponding bit in AL is left as it is.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER ‘

SECTION:

PAGE:

22

52

The contents of y remain unchanged and in y. " = (v);
Example:

(AL); = 123456

(y) = 000077
(AL); = 123477
NOTES:

a The INCLUSIVE OR function is defined in the following table:

(v) 0o} 1
(AL) 0
LOGICAL SUM 0|1} 1

m This instruction is sometimes called selective set.

AND (AND)

Operation: [(AL) (y)] - AL
Execution Time: 1.50 usec.
y=Up+ Ui

Each bit in y is logically multiplied by corresponding bits in AL and the 18
independent logical products are placed in AL. This is a bit-by-bit AND. For
each bit in y that equals 0, clear the corresponding bit in AL to 0. For each
bit in y that equals 1, the corresponding bit in AL is left as it is.

The contents of y remain unchanged and in y. (y); =)

Example:

(AL),
)
(AL)¢

123456
707070
103050

I

Il

1]

NOTES:

B The AND function is defined in the following table:

(v) 0]l 01| 1
(AL) ol 1|01
LOGICAL PRODUCT olo]o

m This instruction is sometimes called selective clear.

UP-7599
Rev. 1

SECTION: PAGE:

UNIVAC 418-111l RTOS ASSEMBLER '

23

53

54

EXCLUSIVE OR (XOR)
Operation: (AL) (y) » AL
Execution Time: 1.50 usec.
y=Up+ U1

Each bit in y is logically subtracted from corresponding bits in AL and the 18
independent logical differences are placed in AL. This is a bit-by-bit EXCLUSIVE
OR. For each bit in y that equals 1, complement the corresponding bit in AL. For
each bit in y that equals 0, the corresponding bit in AL is left as it is.

The contents of y remain unchanged and in y. (y)f = (y)i

Example:

(AL); = 123456

(y) = 070007
(AL); = 153451
NOTES:

B The EXCLUSIVE OR function is defined in the following table:

(y) 0|lo0]1
(AL) o|l1]o
LOGICAL DIFFERENCE 0|11

8 The instruction is sometimes called selective complement.

ENABLE INTERRUPTS AND JUMP INDIRECT (EJI)
Operation: (y) - the P register, and remove interrupt lockout
Execution Time: 1.50 usec.

y=Up+ Ui

This instruction removes interrupt lockout, enables interrupts and passes program
control to the address which is specified by the contents of y.

NOTES:

® Interrupt lockout is set by all interrupts received from the IOM.

® An application of this instruction is the termination of a subroutine activated
by an interrupt.

B This instruction gives the same result as executing the two instructions, clear
interrupt lockout (f = 5030) and jump indirect (f = 55), in succession.

@ Interrupts are inhibited for one instruction time following the execution of this
instruction.

UP-7599
Rev. 1

6

\ SECTION:

UNIVAC 418-111l RTOS ASSEMBLER \

PAGE:

24

55 JUMP INDIRECT (JI)

56

57

Operation: (y)~-» P
Execution Time: 1.50 usec.
y=Up+Ujig

This instruction passes program control unconditionally to the location specified
by the contents of y.

TEST B REGISTER FOR EQUALITY (TB)

Operation: IF (B) = (y); SKIP NI, [(P) +2 - P]
IF (B) £ (y); ADVANCE B BY ONE [(B) + 1 » B]
EXECUTE NI[(P)+ 1 » P]

Execution Time: 2.50 usec.
y=Up+ U1

This instruction compares the contents of B, specified by IRP, with the contents

of y. If they are equal, the next instruction is skipped. If (B) = (y), then (P) + 2 > P.

If they are not equal, the contents of B are incremented by 1 and the computer
executes the next instruction. If (B) # (y), then (B) + 1 > B and (P) + 1 » P.

TEST ANY LOCATION FOR ZERO (TZ)

Operation: IF (y) = 0, SKIP NI, [(P) + 2 » P]
IF (y) # 0, DECREMENT (y) BY ONE [(y) — 1> y]

EXECUTE NI, {(P)+ 1 » P]

Execution Time: 2.25 usec.

y=Up+ Ui

If the contents of y are 0, the next instruction is skipped. If (y) = 0, then (P) + 2 > P.

If they are not 0, they are decremented by 1 and the processor executes the next
instruction. If (y)# 0, then (y) =1 >y and (P)+ 1> P.

UP-7599
Rev. 1

6

SECTION:

UNIVAC 418-111l RTOS ASSEMBLER }

25

PAGE:

60 JUMP ON AU ZERO (JUZ) (Compare designator not set)

Operation: IF (AU)=+0,y > P
IF (AU £+0, P)+ 15 P

Execution Time: 0.75 usec.
y=Up+Uj1g
The COMPARE stage of the compare designator is not set.

If the contents of AU equals positive 0, program control passes to the location
specified by y. If (AU) = +0, then y » P.

If the contents of AU does not equal positive 0, the processor executes the next
instruction. If (AU) # +0, then (P) + 1 » P.

NOTE:

Negative 0 acts as not 0.

60 JUMP ON EQUAL (JE) (Compare designator set)

Operation: IF (AL)=M, y-> P
IF (AL)#¥ M, P)+1- P
IF [(AL) IXT (AU)l = M,y > P
IF [(AL) AW £M, (P)+1-P

Execution Time: 0.75 usec.

y=Up+ U1
The COMPARE stage of the compare designator is set.

If the EQUAL stage of the compare designator is set, program control passes to
the location specified by y.

IF (AL)= M, theny » P
IF (AL) IXB] (AU)| = M, theny » P

If the EQUAL stage of the compare designator is not set, the next instruction is
executed.

IF (AL) £ M, then (P)+ 1 > P
IF [(AL) EXH (AU) £ M, then (P)+ 1 - P

NOTES:
B Negative 0 acts as not 0.

® Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1

6

SECTION:

UNIVAC 418-11l RTOS ASSEMBLER I

PAGE:

26

61

61

JUMP ON AL ZERO (JLZ) (Compare designator not set)

Operation: (AL)=+0,y- P
(AL)#+0, (P)+1- P

Execution Time: 0.75 usec.
y=Up+Ujrp
The COMPARE stage of the compare designator is not set.

If the contents of AL equal positive 0, program control passes to the location
specified by y. IF (AL) = +0, theny » P

If the contents of AL does not equal positive 0 (contains any 1 bits) the processor
executes the next instruction. IF (AL) # 0, then (P)+ 1 > P

NOTE:

Negative 0 acts as not 0.

JUMP ON EQUAL (JE) (Compare designator set)

Operation: IF (AL)=M,y-> P
IF (AL)£# M, (P)+ 1> P
IF [(AL) Aauv)l=M,y-» P
IF [(AL) MW AU #M, (P)+1-P

Execution Time: 0.75 usec.
y=Up+ U1
The COMPARE stage of the compare designator is set.

If the EQUAL stage of the compare designator is set, program control passes to
the location specified by y.

IF (AL)= M, THEN y - P
IF [(AL) (AU)} = M, theny » P

If the EQUAL stage of the compare designator is not set, the processor executes
the next instruction.

IF (AL) # M, then (P)+ 1 > P
IF [(AL) (AU)] # M, then (P)+ 1 > P

NOTE:

Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1

UNIVAC 418-11i RTOS ASSEMBLER ’

SECTION: , PAGE:

27

62

62

JUMP ON AU NONZERO (JUNZ) (Compare designator not set)

Operation: IF (AU)# +0, y > P
IF (AU)=+0, (P)+1 > P

Execution Time: 0.75 usec.
v=Up+ Ui
The COMPARE stage of the compare designator is not set,

If the contents of AU does not equal positive 0 (contains any 1 bits) program
control passes to the location specified by y. IF (AU) # +0, then y > P,

If the contents of AU equals positive 0, the processor executes the next instruction.

IF (AU) = +0, then (P)+ 1 > P

NOTE:

Negative 0 acts as not 0.

JUMP ON NOT EQUAL (JNE) (Compare designator set)

Operation: IF (AL)+#£ M, y- P
IF (AL)=M, (P)+ 1> P
IF [(AL) IME (AU)] £ M,y P
IF [((AL) M3 (AU) =M, (P)+ 1 P

Execution Time: 0.75 usec.
vy=Up+Ujg
The COMPARE stage of the compare designator is set.

If the EQUAL stage of the compare designator is not set, the processor passes
control to the location specified by y.

IF (AL) # M, then y > P
IF [(AL) FXT (AU)] # M, then y > P

If the EQUAL stage of the compare designator is set, the processor executes the
next instruction.

IF (AL)= M, then (P)+ 1 > P
IF [(AL) IXTY (AU)] = M, then P)+1-P

NOTE:

Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1

6
UNIVAC 418-111'RTOS ASSEMBLER \ \mmm \ -

28

63

63

JUMP ON AL NONZERO (JLNZ) (Compare designator not set)

Operation: IF (AL)# +0,y- P
IF (AL)=+0, (P)+1- P

Execution Time: 0.75 usec.
y=Up+ U110
The COMPARE stage of the compare designator is not set.

If the contents of AL does not equal positive 0, program control passes to the
location specified by y. IF (AL) # +0, theny » P

If the contents of AL equals positive 0, the processor executes the next instruction.

IF (AL) = +0, then (P) +1 - P

NOTE:

Negative 0 acts as not 0.

JUMP ON NOT EQUAL (JNE) (Compare designator set)

Operation: IF (AL)# M, y-> P
IF AL)=M, (P)+1-P
IF [(AL) IXD (AU)# M, y - P
IF [(AL) Aml=M,®P)+1-P

Execution Time: 0.75 usec.
y=Up+ U
The COMPARE stage of the compare designator is set.

If the EQUAL stage of the compare designator is not set, the processor passes
control to the location specified by y.

IF (AL)# M, theny > P
IF [(AL) IXIE (AU)] # M, theny > P

If the EQUAL stage of the compare designator is set, the processor executes the
next instruction.

IF (AL)=M, then (P)+ 1> P
IF [(AL) IXB (AU)] = M, then (P) + 1 - P

NQOTE:

Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1

l SECTION:

" UNIVAC 418-111 RTOS ASSEMBLER l

PAGE:

29

64 JUMP ON AU POSITIVE (JUP) (Compare designator not set)

Operation: IF (AU) POSITIVE, y-> P
IF (AU) NOT POSITIVE, (P)+ 1> P

Execution Time: 0.75 usec.
y=Up+ Ut1.0
The COMPARE stage of the compare designator is not set.

If the sign of AU is positive, program control passes to the location specified
by y. IF (AUy5) =0, theny > P

If the sign of AU is negative, the processor executes the next instruction. IF
(AUy7) =1, then P)+1-P

64 JUMP ON NOT LESS (JNLS) (Compare designator set)

Operation: IF (AL)> M,y- P
IF (AL)< M, (P)+1- P
IF [(AL) @@ (AU)] > M, y-> P
IF [(AL) I8 (AU) < M, (P)+1- P

Execution Time: 0.75 usec.
y=Up+ Ui
The COMPARE stage of the compare designator is set.

If the LESS THAN stage of the compare designator is not set, program control
passes to the location specified by y.

IF (AL) > M, then y > P
IF [(AL) X1 (AU)] > M, theny > P

If the LESS THAN stage of the compare designator is set, the processor executes
the next instruction.

IF (AL) <M, (P)+1- P
IF [(AL) B3 (AU <M, (P)+1->P

NOTE:

Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1

UNIVAC 418-1ll RTOS ASSEMBLER ‘

SECTION: PAGE:

30

65

65

JUMP ON AL POSITIVE (JLP) (Compare designator not set)

Operation: IF (AL) POSITIVE, y - P
IF (AL) NEGATIVE, (P)+ 1 > P

Execution Time: 0.75 usec.
y=Up+ U190
The COMPARE stage of the compare designator is not set.

If the sign of AL is positive, program control passes to the location specified
by y. IF (ALy;) =0, theny > P

If the sign of AL is negative, the processor executes the next instruction. IF
(ALy7) =1, then (P)+ 1 P

JUMP ON NOT LESS (JNLS) (Compare designator set)

Operation: IF (AL)> M,y > P
IF (AL)< M, P)+1- P
IF [(AL) X3 (AU)] > M,y P
IF [(AU) B (AU)J < M, (P)+1->P

Execution Time: 0.75 usec.
y=Up+Uiio
The COMPARE stage of the compare designator is set.

If the LESS THAN stage of the compare designator is not set, program control
passes to the location specified by y.

IF (AL)> M, theny -~ P
IF [(AL) IXIJ (AU)] > M, theny > P

If the LESS THAN stage of the compare designator is set, the processor executes
the next instruction.

IF (AL)<M, (P)+ 1> P
IF [(AL) IXI9 (AU)] > M, (P)+ 1+ P

NOTE:

Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

6 31
SECTION: PAGE:

66 JUMP ON AU NEGATIVE (JUN) (Compare designator not set)

Operation: IF (AU) NEGATIVE, J > P
IF €AU) POSITIVE, (P)+ 1> P

Execution Time: 0.75 usec.
y=Up+ Ui
The COMPARE stage of the compare designator is not set.

If the sign of AU is negative, program control passes to the location specified
by y.

IF (AU17) =1, theny - P

If the sign of AU is positive, the processor executes the next instruction.
IF (AU17) =0, then(P)+1-> P

66 JUMP ON LESS (JLS) (Compare designator set)

Operation: IF (AL)<M, y - P
IF (AL)> M, (P)+ 1> P
IF [(AL) IXI2? (AU)] <M,y P
IF [(AL) IXI2 (AU)l > M, (P)+ 1> P

Execution Time: 0.75 usec.
y=Up+Uj1p
The COMPARE stage of the compare designator is set.

If the LESS THAN stage of the compare designator is set, program control passes
to the location specified in y.

IF (AL) <M, theny - P

IF [(AL) IM9 (AU)] < M, then y > P

If the LESS THAN stage of the compare designator is not set, the processort
executes the next instruction.

IF (AL)> M, then (P)+ 1> P

IF [(AL) LNl (AU)] > M, then (P)+ 1 » P

NOTE:

Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1

\ SECTION:

UNIVAC 418-111 RTOS ASSEMBLER \

PAGE:

32

67 JUMP ON AL NEGATIVE (JLN) (Compare designator not set)

Operation: IF (AL) NEGATIVE, y-» P
IF (AL) POSITIVE, P)+ 1 - P

Execution Time: 0.75 usec.
y=Up+ U0
The COMPARE stage of the compare designator is not set.

If the sign of AL is negative, program control passes to the location specified
by y.
If (ALy7)=1, theny - P

If the sign of AL is positive, the processor executes the next instruction. IF (AL)
=0, then(P)+1->P

67 JUMP ON LESS (JLS) (Compare designator set)

Operation: IF (AL)< M,y - P
IF (AL)> M, (P)+ 1> P
IF [(AL) (A <M, y- P
IF [(AL) (A >M, (P)+1-P

Execution Time: 0.75 usec.

y=Up+ U1
The COMPARE stage of the compare designator is set.

If the LESS THAN stage of the compare designator is set, program control
passes to the location specified by y.

IF (AL) < M, then y > P
IF [(AL) (AU)] <M, then y » P

If the LESS THAN stage of the compare designator is not set, the processor
executes the next instruction.

IF (AL)> M, then (P)+ 1> P
IF [(AL) (AU)] > M, then (P)+ 1> P

NOTE:

Execution of this instruction does not clear the compare designator.

UP-7599 6 33
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER cecmion: e

70 LOAD AL WITH ““KONSTANT’’ (LLK)
Operation: y » AL
Execution Time: 1.00 usec.

y = U (sign extended to 18 bits)

The contents of y are the lower-order 12 bits of this instruction extended to 18
bits by the repetition of bit 11 in bit positions 17 through 12. This expanded
18-bit number is placed in AL.

Examples:

70 0001g, y = 0001g, LOAD AL WITH “KONSTANT” + 1

(AL); = any value

(AL)¢ = 000001g ‘

70 7775g, y = 7775g, LOAD AL WITH “KONSTANT”’ -1
(AL); = any value

(AL)f = 777775¢

i

NOTES:

m The LOAD AL WITH ‘““KONSTANT’’ instruction itself remains unchanged by
the operation.

m U is the 12-bit number contained within the instruction; it does not refer to
an address,

® The constant, U, may range in value from —3777g to +3777g.

UP-7599
Rev. 1

SECTION:

UNIVAC 418-111l RTOS ASSEMBLER I

PAGE:

34

71

ADD ““KONSTANT’’ TO AL (ALK)
Operation: (AL)+ y » AL

Execution Time: 1.00 usec.
y = U (sign extended to 18 bits)

The contents of y are the lower-order 12 bits of this instruction, extended to
18 bits by the repetition of bit 11 in bit positions 17 through 12. This 18-bit
number is then added to the contents of AL and the resultant, SUM, is placed
in AL.

Examples:

71 0002g, y = 0002g, ADD “KONSTANT” + 2 TO AL
(AL); = 057777
(AL); = 0600014

71 7775g, y = 7775g, ADD ““KONSTANT’’ —2 TO AL

(AL); = 0670554
(AL); = 0670534
NOTES:

m The ADD ““KONSTANT’’ TO AL instruction itself remains unchanged by the
operation.

® U is the 12-bit number contained within the instruction; it does not refer to an
address.

8 The constant, U, may range in value from -37778 to +37778.

m If the contents of AL is negative 0 and y is negative 0, the result of the
addition is negative 0.

(AL); = I’s if (AL); = I’s and y = 1’s

B The results of addition involving all other possible combinations of positive
and negative 0 are positive 0.

B If the magnitude of the resultant is too large for AL to hold, the result is

~ incorrect and the overflow designator is set. The state of the overflow
designator is tested by either the SKIP ON OVERFLOW instruction (f = 5052)
or the SKIP ON NO OVERFLOW instruction (f = 5053). The execution of
either of these two instructions clears the overflow designator.

UP-7599
Rev. 1

6

‘SECTION:

UNIVAC 418-11l RTOS ASSEMBLER ’

’ PAGE:

35

72

73

STORE INDEX REGISTER (SIR)

Operation: IRP3_0 > ¥30
0’s » y5_4

Execution Time: 3.00 usec.
y=Up +Uj1 9

This instruction replaces the six low-order bits of the contents of y with a six-
bit value in which the contents of IRP3_0 replaces the contents of y3_o and zeros

replace the contents of ¥5.4. Bits 17 through 6 of the contents of y remain unchanged.

The resultant is stored at storage location y,.

NOTES:

® If the contents of IRP equals 0, bit 3 of the contents of y is set. If the contents
of IRP does not equal 0, bit 3 of the contents of y is cleared. That is, IRP
points to storage address 108 when loaded with 00g.

IF (IRP) = 0 (y3) = 1
IF (IRP) # 0 (y3) = 0

B Since this instruction effects a partial transfer, the 12 high-order bits of y
remain unchanged.

JUMP IF B REGISTER NONZERO (JBNZ)
Operation: IF (B) +0, (B) — 1 > B and y- P
IF(B)+0, (P)+1-5 P
Execution Time: 1.75 usec.

y=Up+ U1

If the contents of B, specified by IRP, are not positive 0, the contents of B are
decremented by 1 and program control passes to the location specified by y. If
the contents of B, specified by IRP, are positive 0, the processor executes the
next instruction.

IF (B) +0, then (B) = 1> B and y » P
IF (B) +0, then (P) + 1 » P

NOTES:

B Negative 0 acts as not 0.

B Since B is a one’s complement number and can take values less than zero, the
B JUMP is effective for program loops only when the contents of B is initially
positive.

UP-7599
Rev. 1

6

‘ SECTION:

UNIVAC 418-11l RTOS ASSEMBLER \

PAGE:

36

74

75

STORE ADDRESS OF AL (SAD)
Operation: (ALll-O) > ¥11-0
Execution Time: 3.00 usec.
y=Up+ Uit

The low-order 12 bits of the contents of AL, (ALll-O)’ replace the corresponding
low-order 12 bits of the contents of y, (y11-0)- The high-order six bits of the
contents of y (yy7.1p) remain unchanged.

The contents of AL remain unchanged and in AL.

Example:

(AL), = 762504g
(y); = 567777g
(y)¢ = 5625044

NOTE:

Since this instruction effects a partial transfer, the six high-order bits of y
remain unchanged.

STORE SPECIAL REGISTER (SSR)

Operation: (SRg_g) » y5_¢

Execution Time: 3.00 usec.

y=Up+ Ui1.0

The contents of the special register replace the 6 low-order bits of the contents
of y (ys_o). Bit 4 of the special register, SRy, is cleared to 0. The contents of

SR3_0,5 bits 0 through 3 and bit 5, and the contents of y17._g bits 17 through 6,
remain unchanged by the operation.

NOTES:

m Since the instruction effects a partial transfer, bits 17 through 6 of the contents

of y (y17.¢) remain unchanged.

m This instruction deactivates the special register as the control bit, bit 4, is
cleared.

UP-7599
Rev. 1

6

SECTION:

UNIVAC 418-11l RTOS ASSEMBLER ‘

PAGE:

37

6.4.

6.4.1.

76 STORE LOCATION AND JUMP (SLJ)

Operation: (P)+1syandy+1-P
Execution Time: 2.00 usec.
y=Up+Us10

The address of the next instruction in storage replaces the contents of the
location specified by y; that is, the current program address plus 1 is stored in
y. Program control passes to the location following the location specified by y;
that is, jump to y plus 1.

NOTES:
B This instruction transfers a full 18-bit word to y.

m The lower 17 bits are (P) + 1; the upper bit is set to 0.

TYPE III INSTRUCTIONS

The following ate type III instructions. Each requires a function code of 50 and a
minor function code in the range of 00g through 77g. The 50 function code identifies

the instruction as type III; the minor function code determines the operation to be
performed.

Type III-b Instructions

Most of the type III-b instructions are the optional floating-point instructions. In
processors not equipped with this feature, floating-point commands are considered
as faults and generate a supervisor call interrupt.

5002 FLOATING-POINT ADD (FA) and (FA*)

Operation: (FA)
(A + (y=1,y)] » A
(FA*)
[(A)+ (y-1+(B), y+ BN~ A

Execution Time: (4.35 + number of shifts/8) usec.
y = Up or USR + Ull-O

This instruction causes the signed floating-point number contained in the main
storage addresses specified by y—1 (most significant half) and y (least signi-
ficant half) to be added to the signed floating-point number contained in the

A register. The sign is indicated by the most significant bit of y—1. The
characteristics are compared and the fixed-point part and exponent in the
floating-point number with the smallest exponent are adjusted until the two
exponents are the same. The fixed-point parts are added, the sum is normalized,
and the result is placed in the A register in the floating-point format. AUy
contains the resultant sign. AU16—9 contains the resultant exponent and AU8_0
and ALy~ o contain the resultant fixed-point part.

UP-7599
Rev. 1

UNIVAC 418-ill RTOS ASSEMBLER |

6

SECTION:

PAGE:

38

NOTES:

® If the resultant exponent is less than zero and the resultant fixed-point part

is nonzero, the operation is completed by normalizing the fixed-point part

and decrementing the exponent past.zero, packing the result in A, and causing

an underflow interrupt to location 348.

® If the resultant exponent is greater than 377g and the resultant fixed-point

part is nonzero, the operation is completed by normalizing the fixed-point
part (shift right one place), incrementing and truncating the exponent (which
results in a zero exponent), packing the result in A, and causing an overflow
interrupt to location 35g.

A register and no interrupt is generated.

5003 FLOATING-POINT SUBTRACT (FS) AND (FS*)

Operation: (FS)
[(A) — (y-1,9)] > A
(FS*)
[(A) = (y-1+ (B), y+ B)I- A

Execution Time: (4.35 + number of shifts/8) usec.

V= Up or USR + U11_0

This instruction causes the signed floating-point number contained in the main

If the resultant fixed-point part is a plus or minus 0, a plus 0 is placed in the

storage addresses specified by y—1 (most significant half) and y (least significant

half) to be subtracted from the signed floating-point number contained in the A
register. The sign is indicated by the most significant bit of y—1. The exponen
are compared and the fixed-point part and exponent in the floating-point number
with the smallest exponent are adjusted until the two exponents are the same.
After subtraction, the difference is normalized and the result is contained in
the A register in the floating-point format.

AU17 contains the resultant sign. AU;j¢ g contains the resultant exponent and
AUg o and ALqy7_g contain the resultant fixed-point part.

NOTES:

m If the resultant exponent is less than zero and the resultant fixed-point part
is nonzero, the operation is completed by normalizing the exponent and
decrementing the fixed-point part past zero, packing the result in A, and
causing an underflow interrupt to location 34g.

B If the resultant exponent is greater than 377g and the resultant fixed-point
part is nonzero, the operation is completed by normalizing the fixed-point
part (shift right one place), incrementing and truncating the exponent (which

ts

results in a zero exponent), packing the result in A, and causing an overflow

interrupt to location 35g.

m [f the resultant fixed-point part is a plus or minus 0, a plus 0 is placed in the

A register and no interrupt is generated.

UpP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

, 6 l 39
SECTION: PAGE:

5004 FLOATING-POINT MULTIPLY (FM) and (FM¥)

Operation: (FM)
[(A) X (Y“IIY)] - A
(FM*)
LA x (y=1+ B), y + B)] > A

Execution Time: 12.00 usec.

y = Up or USR + U11-0

This instruction causes the signed floating-point number contained in the

A register to be multiplied by the contents of the signed floating-point number
contained in the main storage address specified by y — 1 (most significant
half) and y (least significant half), with the product contained in the A
register in the floating-point format. AU17 contains the resultant sign. AU16_9
contains the resultant exponent and AUg g and ALy 7.0 contain the resultant
fixed-point part.

NOTES:

® If the resultant exponent is less than zero, the operation is completed by
placing the resulting exponent (which is truncated to 8 bits) and the
normalized fixed-point part (shifted zero or one place left, since operands
are assumed to be normalized) in A, then causing an interrupt to location
34g. ‘

® If the resultant exponent is greater than 377g, the operation is completed
by placing the resulting exponent (truncated to 8 bits) and the normalized
fixed-point part in A, then causing an interrupt to location 35g.

5005 FLOATING-POINT DIVIDE (FD) AND (FD*)

Operation: (FD)
[(A) + (y-1,9)] > A
(FD*)
LAY + (y=1+ B), y+ B))] - A

Execution Time: 12.00 usec.
y = Up or USR + U11_0

This instruction causes the signed floating-point number contained in the A
register to be divided by the contents of the signed floating-point number
contained in the main storage addresses specified by y—1 (most significant
half) and y (least significant half), with the quotient contained in the A register
in the floating-point format. The remainder is not saved. AU17 contains the
resultant sign. AUjg.9 contains the resultant exponent and AUS—O and AL17_0
contain the resultant fixed-point part.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER

6
SECTION: PAGE:

40

5006

NOTES:

m If division is attempted with an unnormalized divisor or a divisor of plus
or minus 0, the operation is suppressed (contents of A is unchanged), the
overflow designator is set, and an exponent overflow interrupt occurs to
location 35g*

m If the resultant exponent is less than 0, the operation is completed by
placing the resulting exponent (truncated to 8 bits) and the normalized fixed-
point part in A, then causing an interrupt to location 34g.

m If the resultant exponent is greater than 377g, the operation is completed by
placing the resulting exponent (truncated to eight bits) and the normalized
fixed-point part (right shift of zero or one place) in A, then causing an
interrupt to location 35g.

FLOATING-POINT PACK (FP) AND (FP*)

Operation: (FP)
(A35) > Az5.27
Normalized (A35_0) - Ag6.0
[(Y7_g) +actual shift count] EGR Agy o7 > A34.27
(FP*) when bit position 12 of the second word = 1,
{[y+(B)7_0] + actual Shift count} m A34_27 - A34_27

Execution Time: (3.5 + number of shifts/8) usec.
y=Up or Usr + U11.0

The contents of the A register (the fixed-point part) is normalized by shifting
the contents of A left or right until the most significant bit of the number is

in bit position 26. The sign bit, A3g, is extended through bit positions 35-27.
The contents of bit positions 7 through 0 of the main storage address specified
by Y (the exponent part) plus the number of right shifts or minus the number of
left shifts necessary for the normalization is exclusively ORed into bit positions
34-27.

Examples:

(1) (AU)i= 0600000 (AL)i = 000001 (y)i = 000233
(AU) f = 201400 (AL)f = 000000 (y)f = 000233

2) (AU)i =777777 (AL)i = 777773 (y)i = 000233
(AU)f = 575377 (ALY = 777777 (y)f = 000233

(3) (AU)i =123456 (AL)i = 712345 (y)i = 000233

C)

(AU - 242516
(AU)i - 100000
(AU)f = 007400

NOTES:

m If the contents of the A register are initially plus o
is plus 0.

(ALY = 273451
(AL)i = 000000
(AL)f = 000000

(y)f = 000233
(y)i = 000000
(y)f = 000000

r minus 0, the result

6

SECTION:

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

PAGE:

m Overflow and underflow are handled the same as in FA and FS (see notes
given with FA and FS instructions), except that a right shift of eight places
may cause the exponent to overflow past 0.

m The contents of the operand address are normally 02338 (bias +2710) for a
float operation. For example, to tloat an integer value given in (AL):

SLA 18 Put sign into (AU)
SRA 18 Restore (AL)
FP (0200+27) Float

5007 FLOATING-POINT UNPACK (FU) and (FU*)

Operation: (FU)
It (A35) = 0, (A34.27) > y7.0
If (A35) =1, (Ag4.p7) > y7.0 and 0’s > y1 7 g(A3s) > Agy p7
(FU*) If bit position 12 of the second word = 1,
(Az4.27) or (Agyq_o7) ~ [y + (B)ly g

Execution Time: 3.50 usec.
y=UporUsr + Uj19

The contents of the absolute value of the exponent (that is, if S = 1, complement
the exponent) in the A register bit positions 34 through 27 are transferred into
bit positions 7 through 0 of the main storage address specified by y. If A3z is

a 1 the exponent is complemented before storing. Zeros are put into yy~_g. The
content of bit position 35 of the A register is put into bit positions 34 through
27 of the A register. Bit positions 26 through 0 of the A register are unchanged.

35 34 27 26 0
A s c M
|
35] 34 27|26 0

Y |0~ 0 c
17 8|7 0
Ar s _— ——s M
35 27|26 0

UP-7599

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER ‘

6

SECTION:

PAGE:

42

5010 READ AND SET (RS) and (R$*)

Operation: (y)-» AL or{y + (B)l ~ AL
(v16-0) > Y16-0 @nd 1 » yy7 orly + Blyg. g~ Ly + Bllyg o and
1-[y+ (B)]17

Execution Time: 2.50 usec.
y="UporUsg + Ui

This instruction transfers the contents of y, bits 17 through 0, into AL. Then
bits 16 through 0 are restored to y, and bit 17 of y is set to 1.

If bit 12 of (P + 1) is set, then the address is B modified.

6.4.2. Type Ill-a Instructions

5011

LOAD INPUT CHANNEL (LIC) - Privileged

Operation: Load I/0 channel K from (P) + 1 and (P) + 2.
Initiate input, (P) + 3 » P.

Execution Time: 5.30 usec minimum.

Execution of this instruction activates the input channel specified by the K
portion of the instruction and causes the two succeeding addresses to be

stored in the input buffer control word addresses for the designated channel,

(P) + 1 =-terminal buffer control word and (P) + 2 = present buffer control word.
The processor then resumes normal operation by passing program control to the
location immediately following the buffer control words, (P) + 3 » P. The contents
of the two storage registers following the instruction remain unchanged by the
operation.

NOTES:

m On ESI channels, the two words following a load input channel instruction
are ignored since buffer control addresses are obtained from the communications
line terminal (CLT).

K must be odd for paired channel, 36-bit operation.

UP-7599 | UNIVAC 418-11l RTOS ASSEMBLER

Rev. 1

SECTION: PAGE:

43

5012

5013

LOAD OUTPUT CHANNEL (LOC) - Privileged

Operation: Load I/0 channel K from (P)+ 1 and (P) + 2.
Initiate output, (P) + 3 - P.

Execution Time: 5.30 usec minimum.

Execution of this instruction activates the output channel specified by the K
portion of the instruction and causes the two succeeding addresses to be stored
in the output buffer control word addresses for the designated channel, (P)

+ 1 = terminal buffer control word and (P) + 2 = present buffer control word,

The processor then resumes normal operation by passing program control to

the location immediately following the buffer control word, (P) + 3 5 P, The
contents of the two storage registers following the instruction remain unchanged
by the operation.

NOTES:

® On ESI channels, the two words following a load output channel instruction
are ignored since buffer control addresses are obtained from the communica-
tions line terminal (CLT).

m K must be odd for paired channel, 36-bit operation.

LOAD EXTERNAL FUNCTION CHANNEL (LFC) — Privileged

Operation: Load I/O channel K from (P)+ 1 and (P) + 2.
Initiate external function, (P) + 3 > P.

Execution Time: 5.60 usec minimum.

Execution of this instruction activates the input channel specified by the K
portion of the instruction and causes the two succeeding addresses to be
stored in the input buffer control word addresses for the designated channel,
(P) -+ 1 = terminal buffer control word and (P) + 2 = present buffer control

word. The processor then resumes normal operation by passing program con-
trol to the location immediately following the buffer control words, (P) + 3 - P,
The contents of the 2 storage registers following the instruction remain un-
changed by the operation.

NOTES:
® K must be odd for paired channel, 36-bit operation,

® K must be even for channels in ESI mode.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER \ \ 6 \ 44
SECTION: PAGE:

5015

5016

5017

5020

STOP INPUT ON CHANNEL (STIC) - Privileged

Operation: Stop input on channel K.
Execution Time: 2.15 usec minimum.

Execution of this instruction stops all input activity on the channel specified
by the K portion of the instruction.

NOTE:

K should be odd for paired, 36-bit channel operation.
STOP OUTPUT ON CHANNEL (STOC) - Privileged
Operation: Stop output or external function on channel K.
Execution Time: 2.15 usec minimum.

Execution of this instruction stops all output or external function activity on
the channel specified by the K portion of the instruction.

NOTE:

K should be odd for paired, 36-bit channel operation.

STORE SPECIAL DESIGNATORS (SSD)

Operation: Store the contents of SR and of the borrow and overflow designators
into the address specified by (P)+1; (P)+2- P.

Execution Time: 2.50 usec.

The designator settings and the SR contents will be stored in the following
format:

0 BlOV] 0 SR

17 12]11}10}9 6[5 0

B is set to 1 if the borrow designator is set; 0 if it is not.
OV is set to 1 if the overflow designator is set; 0 if it is not.

LOAD SPECIAL DESIGNATORS (LSD)

Operation: Load the SR register and set the borrow and overflow designators
with the contents of the address specified by (P)+1; (P)+2- P,

Execution Time: 2.50 usec.

The SR is loaded with bits 5—0 of the word specified at (P)+1. The borrow and
overflow designators are set with the values of bit positions 11 and 10 of the
word specified by (P)+1.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER ‘

SECTION: l PAGE:

45

5021

5022

5023

TEST INPUT CHANNEL (TIC) - Privileged
Operation: If input channel K is idle (P) + 2> P

If input channel K is active (P)+ 1> P
Execution Time: 1.00 usec.
This instruction tests for input activity on the channel specified by the K
portion of the instruction. If there is no input activity on channel K, the next
instruction is skipped. If there is activity on channel K, the next instruction
is executed; (P) + 1 » P,
NOTE:
K should be the same as in the load input channel instruction, 5011,
TEST OUTPUT CHANNEL (TOC) - Privileged
Operation: If output channel K is idle (P) + 2> P

If output channel K is active (P) + 1 > P
Execution Time: 1.00 usec.
This instruction tests for output activity or external function activity on the
channel specified by the K portion of the instruction. If there is no output
activity or external function activity on channel K, the next instruction is
skipped; (P) + 2 » P. If there is output activity on channel K, the next instruc-
tion is executed; (P)+ 1 » P.
NOTE:
K should be the same as in the load output channel instruction, 5012,
TEST FUNCTION CHANNEL (TFC) — Privileged

Operation: If external function channel K is idle (P) + 2 P
If external function channel K is active (P) +1- P

Execution Time: 1.00 usec.

This instruction tests for external function activity on the channel specified
by the K portion of the instruction. If there is no external function activity on
channel K, the next instruction is skipped; (P) + 2 » P. If there is external
function activity on channel K, the next instruction is executed; (P) + 1 » P.

NOTE:

K should be the same as in the load external function channel instruction,
5013,

UP=7599
Rev. 1

UNIVAC 418-ill RTOS ASSEMBLER ‘

SECTION:

PAGE:

46

5024
or

5025

5026

5030
or

5031

5034
or

5035

WAIT FOR INTERRUPT (WFI) - Privileged

Operation: Stop c/a section, but not I/O transmission until the occurrence of
an interrupt.

Execution Time: 1.00 usec.

This instruction stops the main program operation, but lets I/0 activity con-
tinue normally. When an interrupt of any type occurs, the interrupt is processed,
and main program operation is resumed. K is ignored,

NO OPERATION (NOP)

Operation: (P)+ 1 - P

Execution Time: 1.00 usec.

The execution of this instruction increments the contents of P by 1, (P)+ 1 - P,

No other operation occurs as a result of this instruction.

ALLOW ALL INTERRUPTS (AAD)

Operation: Remove I/0 interrupt lockout.
Execution Time: 1.00 usec.

This instruction permits all I/O interrupts to be honored after having been
locked out by the prevent all interrupts instruction, 5034 or 5035, or by the
occurrence of an interrupt. K is ignored. Interrupts are inhibited for one instruc-
tion time following the execution of this instruction.

PREVENT ALL INTERRUPTS (PAI)

Operation: Locks out I/0 interrupts,
Execution Time: 1.00 usec.

This instruction prevents all I/O interrupts from being honored. K is ignored.

NOTES:

m This instruction stops interrupts from the delta clock and day clock but
allows updating of them while preventing all I/0 interrupts.

m This instruction has the same effect as the occurrence of an interrupt.

UP-7599
Rev. 1

UNIVAC 418-1ll RTOS ASSEMBLER ’

SECTION:

PAGE:

47

5041

5042

5043

RIGHT SHIFT AU (SRU)
Operation: Shift (AU) right K bit positions.
Execution Time: (1.00 + number of shifts/8) usec.

The contents of AU are shifted to the right by the number of bit positions
specified by the K portion of the instruction. The original sign bit of AU,
the content of AU17, at the time the shift begins is filled in at the left end
of AU. In all cases, this is an end-off shift; the lower-order bits of AU,
specified by K, are lost off the right end of AU.

Example:

K == 2 and the contents of AU are positive
(AU); - 3700004

First Shift
(AU) - 1740008

Second Shift
(AU)f = 0760008

K == 2 and the contents of AU are negative
(AU); ~ 4000004

First Shift
(AU) - 6000008

Second Shift
(AU)f = 7000008

RIGHT SHIFT AL (SRL)
Operation: Shift (AL) right K bit positions.
Execution Time: (1.00 + number of shifts/8) usec.

The contents of AL are shifted to the right by the number of bit positions
specified by the K portion of the instruction. The original sign bit of AL, the
contents of ALy, at the time the shift begins is filled in at the left end of
AL. In all cases, this is an end-off shift; the low-order bits of AL, specified
by K, are lost off the right end of AL,

RIGHT SHIFT A (SRA)
Operation: Shift (A) right K bit positions.
Execution Time: (1.00 + number of shifts/8) usec.

The contents of A are shifted to the right by the number of bit positions
specified by the K portion of the instruction. The low-order bit of AU, the
contents of AUO, becomes the high-order bit or sign bit of AL, the contents
of AL{~. The original sign bit of A, the contents of A3, at the time the shift
begins is filled in at the left end of A. In all cases, this is an end-off shift;
the low-order bits of A, specified by K, are lost off the right end of A.

6

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 48

\ SECTION: \ PAGE:

Example:

K = 2 and the contents of A is positive
(A); = 370000 000000g

First Shift
(A) = 174000 000000g

Second Shift
(A)f = 076000 000000g

K = 2 and the contents of A is negative
(A); = 400000 000000g

First Shift
(A) = 600000 000000g

Second Shift
(A)f = 700000 0000008

5044 SCALE A (SCA)

Operation: Shift (A) left circularly by K bit positions or until (A) is normal-
ized; K less the actual shift count (location 0000178).

Execution Time: (2.00 ; number of shifts/8) usec.

If the K portion of the instruction is less than or equal to the shift count needed
to normalize the contents of A, the contents of A are shifted left by the number
of bit positions specified by K and positive 0 is stored at storage location
000017g.

If the K portion of the instruction is greater than the shift count needed to
normalize the contents of A, the contents of A become normalized and the
number of bit positions that the contents of A are actually shifted is sub-
tracted from K and the difference is stored in storage location 000017g. The
contents of A become normalized by shifting the contents of A left until the
most significant bit of the number is in bit position 34, A34. In the case of a
positive number, the content of A3y equals 1, and in the case of a negative
number, the content of Agy equals 0. The content of Ayg cannot equal the
content of Ay for a normalized number.

Example:

35| 34(33 A o

UP-7599

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER \ 6

‘ SECTION: PAGE:

K =7
(A); = 170000 000000g (positive and not normalized)

First Shift
(A)g = 360000 000000g (positive and normalized)

The processor senses that the contents of A are normalized and stores the
quantity K minus the shift count, (0000078—0000018) = (0000068), at storage
address 000017g.

K=3
(A); = 600000 000000g (negative and not normalized)

First Shift
(A)f = 400000 0000018 (negative and normalized)

When the contents of A is normalized, the quantity K minus the shift count is
stored; (000003g) — (000001g) - (000002g), at storage address 000017g.

K e 1
(A)i = 070000 000000g (positive and not normalized)

First Shift
(A) = 160000 000000g (positive and not normalized)

When the number of bit positions specified by K have been shifted, the quantity
000000g is stored at storage address 000017g. The contents of A are only par-
tially normalized.

NOTE:

This instruction is useful in the conversion of numbers to a floating-point
format.

5045 LEFT SHIFT AU (SLU)
Operation: Shift (AU) left K bit positions.
Execution Time: (1.00 + number of shifts/8) usec.

The contents of AU are shifted to the left by the number of bit positions speci-
fied by the K portion of the instruction. The high-order bits that are shifted out
through the left end of AU fill in the low-order bit positions of AU. No bits are
lost as a result of the operation.

Example:

K= 2
(AU); = 3000004

First Shift
(AU) = 600000g

Second Shift
(AU)¢ = 400001g

UP-7599
Rev. 1

50

UNIVAC 418-111 RTOS ASSEMBLER ’

SECTION: PAGE:

5046

5047

5050

LEFT SHIFT AL (SLL)
Operation: Shift (AL) left K bit positions.
Execution Time: (1.00 + number of shifts/8) usec.

The contents of AL are shifted to the left by the number of bit positions speci-
fied by the K portion of the instruction. The high-order bits that are shifted out
through the left end of AL fill in the low-order bit positions of AL. No bits are
lost as a result of the operation.

LEFT SHIFT A (SLA)
Operation: Shift (A) left K bit positions.
Execution Time: (1.25 + number of shifts/8) usec.

The contents of A are shifted to the left by the number of bit positions speci-
fied by the K portion of the instruction. The high-order bits that are shifted
out through the left end of A fill in the low-order bit positions of A. No bits
are lost as a result of the operation.

Example:

K=2
(A); - 300000 000000g4

First Shift
(A) = 600000 0000008

Second Shift
(A)g = 400000 000001g

TEST KEYS (TK)
Operation: If keys designated by K are set, (P)+ 2 » P
Execution Time: 1.00 usec.

There are five skip keys on the UNIVAC 418-III maintenance panel and console
which, together with this instruction, permit external control of program branch-
ing. Bits 4 through 0 of the K portion of this instruction correspond to skip keys
4 through 0 on the maintenance panel and console. For every bit in K4_g that is
set to 1, the corresponding skip key is examined. If any of the examined keys are
set, the next instructions are skipped; (P) + 2 > P. If K equals 0 or if all the
examined keys are not set, the next instruction is executed; (P) + 1 » P, If

K5 equals 1, the state of K4_0 is ignored, and the next instruction is skipped;
(P)+ 2~ P.

Example:

K = 01 (bit 0) skip if skip key 0 is set.

= 02 (bit 1) skip if skip key 1 is set.

= 04 (bit 2) skip if skip key 2 is set.

= 10 (bit 3) skip if skip key 3 is set.

= 20 (bit 4) skip if skip key 4 is set.

= 40 (bit 5) skip unconditionally.

= 03 (bits 1,0) skip if skip key 1 or 0 is set.

AAARARARR

UP-7599
Rev. 1

UNIVAC 418-11 RTOS ASSEMBLER ‘

6

SECTION:

PAGE:

51

5051

5052

5053

NOTE:

All combinations of octal codes 00 through 77 are valid codes for K.

TEST NO BORROW (TNB)

Operation: If borrow designator is not set (P) + 2+ P
If borrow designator is set (P) + 1 P

Execution Time: 1.00 usec.

This instruction tests the condition of the borrow designator and passes
program control accordingly. If a double-length add or subtract required a
borrow, the next instruction is skipped; (P) + 2 » P, K is ignored. If a skip
does not occur, a correction of the contents of A is needed. The contents of
A will be too large by a factor of 1, The correcting instruction is ADD NEGA-
TIVELY TO A. This allows a correcting instruction to be inserted to save
program steps.

TEST OVERFLOW (TOF)

Operation: If overflow designator is set (P) + 2> P
If overflow designator is not set (P)+ 1 > P

Execution Time: 1.00 usec.

This instruction tests the condition of the overflow designator and passes
program control accordingly. If an overflow condition occurred on an arithmetic
instruction with the overflow designator set, the next instruction is skipped;
(P) + 2 » P and the overflow designator is cleared. If an overflow condition
did not occur on an arithmetic instruction with the overflow designator not

set, the next instruction is executed. K is ignored.

TEST NO OVERFLOW (TNO)

Operation: If overflow designator is not set (P) + 2 - P
If overflow designator is set (P)+ 1> P

Execution Time: 1,00 usec.

This instruction tests the condition of the overflow designator and passes
program control accordingly. If an overflow condition did not occur on an arith-
metic instruction with the overflow designator not set, the next instruction is
skipped; (P) + 2 P. If an overflow condition did occur on an arithmetic in-
struction with the overflow designator set, the next instruction is executed;
(P) + 1 » P, and clears the overflow designator.

UP-7599
Rev. 1

6
UNIVAC 418-1ll RTOS ASSEMBLER ‘ LECT.ON, ‘ .

52

5054 TEST ODD PARITY (TOP)

5055

Operation: If sum of ones in [(AU) (AL)]
is odd, (P)+ 2> P
If sum of ones in [(AU) (AL)]
is even, (P)+ 1 P

Execution Time: 2.40 usec minimum (see NOTE)

The contents of AU are logically multiplied with the contents of AL and the
number of binary 1’s in the result is checked for parity. If the number of 1’s
is odd, the next instruction is skipped; (P) + 2 » P. If the number of 1’s is
even, the next instruction is executed; (P) + 1 - P. K is ignored.

The contents of AL and AU remain unchanged and in AL and AU,
(AU)¢ = (AU); and (AL); = (AL);

Example:

(AU) = 000077g — Mask
(AL) = 127723g

f(au) (AL)} = 000023¢
Bit Sum = 3

Since the bit sum is odd, the next instruction is skipped.

NOTE:

IOM#0 is used in the execution of this instruction; therefore, the execution
time of this instruction is dependent upon queuing within the IOM.

TEST EVEN PARITY (TEP)

Operation: If sum of ones in [(AU) (AL
is even, (P) + 2> P
If sum of ones in [(AU) (AL)]
isodd, (P)+1- P

Execution Time: 2.40 usec minimum.

The contents of AU are logically multiplied with the contents of AL and the
number of binary 1’s in the result is checked for parity. If the number of 1’s
is even, the next instruction is skipped; (P) + 2 » P, If the number of 1’s is
odd, the next instruction is executed; (P) + 1 » P. K is ignored.

The contents of AL and AU remain unchanged and in AL and AU.

NOTE:

IO0M#0 is used in the execution of this instruction; therefore, the execution
time of this instruction is dependent upon queuing within the IOM.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER ‘

SECTION:

PAGE:

53

5056 STOP ON KEY SETTING (SK) — Privileged
Operation: Stop if keys designated by K are set.
Execution Time: 1.00 usec.

There are five stop keys on the UNIVAC 418-III maintenance panel and console
which, together with this instruction, permit external control of program stops.
Bits 4 through 0 of the K portion of this instruction correspond to stop keys

4 through 0 on the maintenance panel and console. For every bit in K4, that
is set to 1, the corresponding stop key is examined. If any of the examined
keys are set, the c/a section stops. If K equals 0 or if all the examined keys
are not set, the next instruction is executed; (P) + 1 > P. If Kg equals 1, the
state of K4_q is ignored and processing stops.

Example:

K = 01 (bit 0) stop if stop key 0 is set.

K = 02 (bit 1) stop if stop key 1 is set.

K = 04 (bit 2) stop if stop key 2 is set.

K = 10 (bit 3) stop if stop key 3 is set.

K = 20 (bit 4) stop if stop key 4 is set,

K = 40 (bit 5) stop unconditionally.

K = 03 (bits 1,0) stop if stop key 1 or 0 is set.

NOTES:

m All combinations of octal codes 00 through 77 are valid codes for K.

m This instruction is treated as a no operation while in guard mode.

UP-7599

Rev. 1 UNIVAC 418-111l RTOS ASSEMBLER '

SECTION:

PAGE:

54

5060

5061

ROUND A (RND)

Operation: If (A) is positive and (ALy7) =1, (AU) + 1 > AL
If (A) is negative and (ALy7) =0, (AU) -1 - AL
If otherwise, (AU) » (AL)

Execution Time: 1.625 usec.

The purpose of this instruction is to round off double-length arithmetic results

to single-length. If AL contains a significant bit, the significant bit being 1
for positive numbers and 0 for negative numbers, the magnitude of the AU
portion of the double-length result is increased by 1 and the AL portion is
discarded. In all cases, whether rounding takes place or not, the contents of
AU replace the contents of AL. K is ignored.

(AU); = (AU);

The contents of AU remain unchanged and in AU.
The contents of AL are destroyed.

Example:

(A) = 120201 653375g
(AU) = 120201g
(AL); - 6533754
(AL); - 1202024

NOTE:

If the contents of AU equal positive 377777g and the contents of ALy~ equal
1, or if the contents of AU equal negative 377777g and the contents of ALy
equal 0 and the ROUND A instruction is executed, overflow occurs and the
overflow designator is set. The state of the overflow designator is tested by
either the SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO
OVERFLOW instruction (f = 5053). The execution of either of these two in-
structions clears the overflow designator,

COMPLEMENT AL (CPL)
Operation: (AL) > AL
Execution Time: 1.00 usec.

The contents of AL are complemented and the result is placed in AL. K is
ignored,

NOTES:
m This instruction effects a bit-by-bit complement of the contents of AL.

am If the contents of AL are all 0’s, the result of the complement is all 0’s.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER l

SECTION:

PAGE:

55

5062 COMPLEMENT AU (CPU)
Operation: (AU) > AU
Execution Time: 1.00 usec.

The contents of AU are complemented and the result is placed in AU. K is
ignored.

NOTES:
m This instruction effects a bit-by-bit complement of the contents of AU.

m If the contents of AU are all zeros, the result of the complement is all

zZeros.

5063 COMPLEMENT A (CPA)
Operation: (A) » A
Execution Time: 1.875 usec.

The contents of A are complemented and the result is placed in A. K is
ignored.

NOTES:
s This instruction effects a bit-by-bit complement of the contents of A.

m If the contents of A are all 0’s, the result of the complement is all 0’s.

5065 LOAD GUARD MODE (LGM) - Privileged

Operation: Load the lower and upper storage registers with ((P) + Dg.o
and ((P) + 1)17.9 and set guard mode designator active; (P) + 2

- P.

Execution Time: 1.75 usec.

5066 SET AUDIBLE ALARM (SAA) - Privileged

Execution Time: 1.00 usec.

This instruction initiates the console audible alarm. This alarm must be
manually reset with the audio reset switch on the console. K is ignored.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER

SECTION:

PAGE:

56

5067

5070

ENABLE ESI INTERRUPTS (EEI) - Privileged

Operation: Remove ESI interrupt lockout.

Execution Time: 1.00 usec.

This instruction clears the ESI interrupt lockout designator which is set by

the generation of an ESI ‘““hard’’ interrupt. If the K portion of the instruction

is any octal code 00 through 17, IOM#0 is selected; and if the K portion is
any octal code 20 through 37, IOM#l is selected.
(P) = .
17 12 |11 615 0
f17-12 M11-6 Ks.0

NOTES:

® The IOM does not notify the arithmetic section of interrupts tabled while
the ESI interrupt lockout designator is set.

m After the execution of this instruction, the next ESI interrupt which is
received by the specified IOM generates a ‘‘hard”’ interrupt in addition to
being tabled.

m This instruction does not clear the interrupt lockout in the command/arith-
metic section but clears only the ESI interrupt lockout in the IOM specified
by the K portion of the instruction.

® ESI interrupts are inhibited for one instruction time following the execution
of this instruction.

BLOCK TRANSFER (BT)

Operation: If K# 0, (AU) » (AL); (AU)+ 1 » AU; (AL) + 1 » AL.
The sequence is repeated K times.

Execution Time: (1.750 + 1.5 x number of words in block) usec.

This instruction transfers the number of words specified by the K portion of
the instruction from an initial address specified by the contents of AU to an
initial address specified by the contents of AL. The contents of AU equal
the source address and the contents of AL equal the destination address., The
contents of AU and AL are incremented by 1 with each word transferred.

NOTES:

® The maximum number of words that can be transferred with a single instruc-
tion is limited by the K portion of the instruction, 77 octal words.

m If an interrupt is generated during the block transfer, it is not honored until
the completion of the BLOCK TRANSFER instruction.

8 If K equals 0, no data is transferred, and the contents of AU and AL remain

unchanged.
(AU)¢ = (AU); and (AL)¢ = (AL),

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER l

SECTION:

PAGE:

57

5072

5073

LOAD INDEX REGISTER POINTER (LIR)
Operation: Ky _g - IRP
Execution Time: 2.50 usec.

The execution of this instruction causes the present contents of the B ““hard’’
register to be stored at the address specified by the present contents of IRP.
IRP is then loaded with the low-order three bits, bits 2 through 0, specified
by the K portion of the instruction. The contents of storage, specified by the
new contents of IRP, are loaded into B,

NOTES:

® The constant K is contained within the instruction and does not refer to an
address.

m IRP points to storage address 10g when it is loaded with 00g.

@ The index registers, storage addresses 0l1g through 10g, may be loaded
during an initial load operation.

LOAD SPECIAL REGISTER (LSR)
Operation: y - SRg_g

Execution Time: 1.00 usec.

The execution of this instruction causes the low-order six bits of the instruction,

specified by K, to replace the contents of the special register. The special register

is activated only if bit 4 is set, Bit 5 and bits 3 through 0 define the storage seg-

ment to be addressed.

UP-7599

6

UNIVAC 418-111l RTOS ASSEMBLER l

58

Rev. 1 SECTION: PAGE:
5074 DECIMAL TO BINARY CONVERSION (DB)
Operation: [(AUg_3 6.9,12.15)10 » [ALg.ol
Execution Time: 7.735 usec.
This instruction causes a three-character BCD number, packed in a six-bit
field in AU, to be converted into a binary number. The resultant binary number
is the content of AL, The maximum decimal number to be converted must not
exceed [999110.
D1 D2 D3
XX NNNNXXNNNNXXNNNINN AUi OOOOOOOOOOOOOOOOOOAUf
XXXXXXXXXXXXXXXXXXALi OOOOOOOONNNNNNNNNNALf

17 10 9 0

D1, D2, D3 are assumed to be unbiased, positive BCD digits. XX bits are
ignored (D1 = MSC).

NOTES:
m No test is made for invalid BCD characters; that is, greater than 9.

m This instruction should be useful in program conversion of longer fields
by a convert, multiply by 10N, add, process.

m In processors not equipped with this feature, convert commands are considered
a fault and generate a supervisor call interrupt.

6 59

UP-7599
Rev. 1 UNIVAC 418-HI RTOS ASSEMBLER

SECTION: PAGE:

o ——

5075 BINARY TO DECIMAL CONVERSION (BD)
Operation: [(AL9_0)]2 - [AU0_3’6_9’12_15]10
Execution Time: 8.250 usec.

This instruction causes a binary number which must not exceed 9991 to be
converted to BCD. The binary number contained in AL is converted to BCD
and is placed in AU in three six-bit characters. The first two bits of each
packed character are to be ignored and the next 4 bits contain the BCD code.
The most significant character appears at bits AUy, through AUy,.

0 60OOOOO|NNNNNNNNINNIN AL, XX X XXX XXXXXXXXXXXX AU

D1 D2 D3

s et ™ g I, A st ™SO

000000D000COO0O0OO0OOOOO} AL X X NNNNXXNNNNXXNNN N AU

AUy AUy,

NOTES:

m Larger binary numbers should be converted by a divide by 103, convert,
store sequence,

s In systems not equipped with this feature, the convert commands are con-
sidered a fault and generate a supervisor call interrupt.

UP-7599

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER Appendix A
SECTION: PAGE:
TIMING
OPERATION
CODE MNEMONIC INSTRUCTION DESCRIPTION IN i
SECONDS
ARITHMETIC COMMANDS
5060 RND Round A If (A) is positive and 1.625
(AL17)=1, AU +1-AL; If
(A) is negative and (AL17)=
0, (AU)—1-AL,; otherwise
(AU)-AL.
14 AL Add to Lower (AL)4-(Y)>»AL 1.50
15 AL* Add to Lower 1.50
16 ANL Add Negatively to Lower (AL)—(Y)> AL 1.50
17 ANL* Add Negatively to Lower 1.50
20 AA Add to A (AYH(Y=1,Y)>A 3.0
21 AA* Add to A 3.0
22 ANA Add Negatively to A (A)—(Y=1,Y)>A 3.0
23 ANA * Add Negatively to A 3.0
24 M Multiply (AL). (Y)> A 6-5@7\375@
25 e Multiply 6.5
o ' 7.375(2)
26 D Divide (AL)+(Y)»AL; Remainder>AU | 6.5
. 7.375@)
27 D* Divide .5@7 375
71 ALK Add to Lower A “‘Konstant’’ (AL)+ Z>AL 0
FLOATING-POINT ARITHMETIC COMMANDS
5002 ** FA Floating Point Add (A)+(Y=-1,Y)-A 4.35+x
5003 #* FS Floating Point Subtract (A)—(Y=1,Y)-A 4.35+x
5004 *#* FM Floating Point Multiply (A).(Y-=1,Y)>A 12.0
5005 ** FD Floating Point Divide (A)=(Y—=1,Y)»A 12.0
5006 ** FP Floating Point Pack Normalize (A),pack with 3.5+x
biased characteristic from (Y),
and store in A,
5007+# FU Floating Point Unpack Unpack A, leave mantissa 3.5
in A, Store characteristic in Y.
BINARY/DECIMAL CONVERSION COMMANDS
5074 DB Decimal-to-Binary Conversion (AU15__12' 9-6 3_0)» AL (Binary) 7.375
5075 BD Binary-to-Decimal Conversion |AL > (AU; 5-12, 96, 3~0) (Decimal) 8.250

05;3.5919 UNIVAC 418-11l RTOS ASSEMBLER ‘ Appendix A
SECTION: PAGE:
TIMING
OPERATION | \\NEMONIC INSTRUCTION DESCRIPTION IN &
CODE ‘ SECONDS
LOGICAL COMMANDS

51 OR Inclusive OR (AL) BIR (Y)»AL 1.50

52 AND Logical AND (AL) (Y)»AL 1.50

53 XOR Exclusive OR (AL) (Y)»AL 1.50
5061 CPL Complement A Lower The complement of (AL)>AL 1.0
5062 CPU Complement A Upper The complement of (AU)->AU 1.0
5063 CPA Complement A The complement of (A)->A 1.875

TRANSFER COMMANDS

10 LU Load A Upper (Y)»AU 1.50

11 LU* Load A Upper 1.50

12 LL Load A Lower (Y)»AL 1.50

13 LL* Load A Lower 1.50

44 SL Store A Lower (AL)~»Y 1.50

45 SL* Store A Lower 1.50

46 SuU Store A Upper (AU)>Y 1.50

47 SU* Store A Upper 1.50

70 LLK Load A Lower with ‘‘Konstant” | Z-AL 1.0

04 MSL Masked Selective Load (YN)2AL for (AUy)=1 1.50

05 MSL * Masked Selective Load 1.50

32 LB Load Index Register (Y)~IR 1.5

33 LB* Load Index Register 1.5

42 SB Store Index Register (IR)-Y 1.50

43 SB* Store Index Register 1.50

36 LBK Load Index Register with Z~1R 0.75

‘“Konstant’’
37 LBK* Load Index Register with 0.75
‘‘Konstant'’

74 SAD Store Address of A Lower (ALj1—0)>Y11—0 3.0
5072 LIR Load Index Register Pointer Ky _o~IRP 2.5
5073 LSR Load Specia! Register Ks_ g~ SR 1.0

72 SIR Store Index Register Pointer (IRP)=Ygo __q Ifo((;lRf:(:,f).'S 30

If (IRP)=0,
000-Yg_3
75 SSR Store Special Register and (SR)>Y5_g, 0-SRy 3.0
Inactivate

40 cY Clear Y 0-Y 1.50

41 CY* Clear Y 1.50
5070 BT Block Transfer Transfer K words from 1.750+1.5n

ADRp~ADRAL
5017 SSD Store Special Designators (SD) -» 1AR+1 2.5
5020 LSD Load Special Designators (IAR+1)-> SD 2.5

UP-7599

Rev. 1 UNIVAC 418-ill RTOS ASSEMBLER Appendix A
SECTION: PAGE:
OPERATION TIMING
CODE MNEMONIC INSTRUCTION DESCRIPTION IN 4
SECONDS
SHIFT COMMANDS
5041 SRU Shift Right A Upper Shift AU right (END-OFF) 1 +x
K bit positions
5042 SRL Shift Right A Lower Shift AL right (END-OFF) 1+x
K bit positions
5043 SRA Shift Right A Shift A right (END-OFF) 1+x
K bit positions
5044 SCA Scale A Shift A left (END AROUND) 2+x
K places or until normalized
K less shift»000178
5045 SLU Shift Left A Upper Shift AU left (END ARQUND) 1+x
K bit positions
5046 SLL Shift Left A Lower Shift AL left (END AROUND)
K bit positions
5047 SLA Shift Left A Shift A left (END AROUND) 1+x
K bit positions
LOOP CONTROL COMMANDS
73 JBNZ Jump and Modify if Index If (IR)#0, (IR)—1-IR and 1.75
Register Non-Zero Y- 1AR
If (IR)=0, (IAR) +1-1AR
56 B Test B-Register for Equality If(IR)=Y, (IAR)+2> AR 2.5
IFf(IRFY,(IR)1 1-5IR
57 T2 Test Any Location for Zero 1f(Y)=0,(1AR)+2- IAR 2.25
IF(Y)#0,(Y)-1-»Y
COMPARE COMMANDS
02 cL Compare A Lower (AL): (Y) set CD accordingly 1.50
03 CL* Compare A Lower 1.50
06 CLM Compare A Lower Masked by [(AU) X (ALY : L Av) 2.0
A Upper (Y)l; set CD accordingly
07 CLM* Compare A Lower Masked by 2.0
A Upper
COMPARISON JUMP COMMANDS (COMPARE DESIGNATOR SET)
60,61 JE Jump on Equal If CD equal condition set, 0.75
Y > IAR
62,63 JNE Jump on Not Equal If CD equal condition clear, 0.75
Y »1AR
64,65 JNLS Jump on Not Less If CD not less than condition, 0.75
Y »{AR
66,67 JLS Jump on Less If CD less than condition, 0.75

Y- IAR

UP-7599

Rev. 1 UNIVAC 418111 RTOS ASSEMBLER Appendix A
SECTION: PAGE:
TIMING
OPERATION T10 PTIO
CODE MNEMONIC INSTRUCTION DESCRIPTION IN ¢
SECONDS
ARITHMETIC JUMP COMMANDS (COMPARE DESIGNATOR NOT SET)
60 Juz Jump on A Upper Zero If (AU)=0, Y~-1AR 0.75
61 JLZ Jump on A Lower Zero If (AL)=0, Y—IAR 0.75
62 JUNZ Jump on A Upper Non-Zero If (AU):40, Y-IAR 0.75
63 JLNZ Jump on A Lower Non-Zero If (AL)£0, Y~IAR 0.75
64 JUP Jump on A Upper Positive If (AU) is positive, Y~ AR 0.75
65 JLP Jump on A Lower Positive If (AL) is positive, Y IAR 0.75
66 JUN Jump on A Upper Negative If (AU) is negative, Y » 1AR 0.75
67 JLN Jump on A Lower Negative If (AL) is negative, Y~ IAR 0.75
UNCONDITIONAL JUMP COMMANDS
34 J Jump Y > IAR 0.75
35 J* Jump 0.75
55 J Jump Indirect (Y16 -0)~IAR 1.50
30 SLJI Store Location and Jump (IAR)+ 1~ Location in (Y), 2.25
Indirect (Y)+1>IAR
31 SLJI* Store Location and Jump 2.25
Indirect
76 SLJ Store Location and Jump (IAR)+1->Y; Yt1-IAR 2.0
SKIP COMMANDS
5050 TK Test Keys Skip if keys designated by K 1.0
are set. (IAR)+2-1AR
5051 TNB Test No Borrow if borrow indicator off, 1.0
(IAR)+2-1AR
5052 TOF Test Overfiow If overflow indicator on, 1.0
(IAR)+ 2~ IAR
5053 TNO Test No Overfiow If overflow indicator off, 1.0
(IAR)+2-1AR
5054 TOP Test Odd Parity If sum of 1's in (AU) 2.4
(AL) is ODD, (IAR)+2~1AR minimum
5055 TEP Test Even Parity 1f sum of 1's in (AU) IEXX) 2.4
(AL) is EVEN, (IAR)+2~1AR minimum
EXECUTIVE COMMANDS (INTERRUPT CONTROL)
5024 WF1 Wait for Interrupt Stop C/A Unit (not 1/0) 1.0
5025 until Interrupt
5030 A A All Int t
5031 Al low Interrupts Allow all Interrupts 1.0
5034
PAl Prevent All Interrupts Prevent all Interrupts 1.0
5035
54 EJI Enable Interrupts and (Y }»1AR; enables 1.50
. 150 !
Jump Indirect Interrupts
5067 EEI Enable ESI Interrupt If K=0 lows ESI Interrupts, 1.0

10M #0; |f K=208, allow ESI
Interrupts, 10M #1

UP-7599

Rev. 1 UNIVAC 418-i1l RTOS ASSEMBLER : Appendix A
SECTION: PAGE:
TIMING
OPERATION
CODE MNEMONIC INSTRUCTION DESCRIPTION IN i
SECONDS
EXECUTIVE COMMANDS (1/0)

5011 LIC L.oad Input.Channel Load 1/0 Channel K from 5.3
(IAR)+1 and (IAR)+2, initiate minimum
input; then (IAR)+3-> I1AR

5012 LOC Load OQutput Channel Same as LIC except that 5.3
output is initiated minimum

5013 LFC Load External Function Same as LIC except that 5.6

Channel External Function is initiated minimum

5015 STIC Stop Input on Channel Stop Input on Channel K 2.15

minimum

5016 STOC Stop Output on Channel Stop Output on Channel K 2.15

minimum

5021 TIC Test Input on Channel If Input Channel K idle, 1.0
(1AR)+2-1AR

5022 TOC Test Qutput on Channel If Qutput Channel K idle, 1.0
(IAR)+2>1AR

5023 TFC Test External Function If External Function Channel 1.0

on Channel Kidle, (IAR)+2-~ IAR

EXECUTIVE COMMANDS (STORAGE PROTECTION)

5065 LGM Load Guard Mode ((1AR)+1)1 5 _g = Upper Limit 1.75
(HAR)H)B_O -+ Lower Limit,
Guard Mode is set and

(IAR)+2 » IAR
EXECUTIVE COMMANDS (STOP)
5056 SK Stop on Key Settings Stop, if keys designated 1.0
(if not in Guard by K are set; if in Guard
Mode) Mode, (IAR) +1-1AR
EXECUTIVE COMMAND (SPECIAL)
5010 #* RS Read and Set (Y)»-AL,1~Yy7 2.5
5026 NOP No Operation 1.0
5066 SAA Set Audible Alarm 1.0
SUPERVISOR CALL COMMANDS
00 Supervisor Call 0.75
01 Supervisor Call 0.75
77 Supervisor Call 0.75
5000 Supervisor Call 1.0
5001 Supervisor Call 1.0

5077 Supervisor Call 1.0

UP-7599 Appendix A
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER SECTION: PAGE:
LLEGEND FOR INSTRUCTION REPERTOIRE
Subscripts specify bit positions in the register or quantity subscripted.
N represents each bit position.
* = To index an assembler instruction, prefix operand with *(asterisk). The assembler adds 1 to

octal operation code, or set 212 =1of IAR + 1.

X = humber of shifts u seconds
8
n = number of words in the block
*k = |IR-sensitive if 212 of IAR + 1 is set to 1; indexing is indicated by prefixing the operand with an
asterisk (*).
AL = Lower accumulator
AU Upper accumulator
A = Upper and lower accumulators acting as one register
IR = The active index register
IAR = Instruction address register
CDh = Compare designator
Y = On the left of the - symbol, the storage address in the low-order 12 bits of the instruction (bits
11~0); on the right of the » symbol, the storage location specified by that address.
K = The unsigned integer or bit configuration in the low-order 6 bits of the instruction (bits 5-0).
Z = The low-order 12 bits of the instruction, extended to 18 bits by repetition of bit 11 in bit positions
17-12, and treated as a constant in the range —3777 to +3777 octal.
() = Contents of the register named in the parentheses; that is, (Y) = contents of Y.
> Replaces the contents of
= Compare algehraically the quantities on either side of this symbol.
B¢l = Exclusive OR
= Logical AND

= Logical OR
Multiplying numbers of like signs.
Multiplying numbers of unlike signs.

Dividing positive numbers.

@@@@9

Dividing numbers of unlike signs or negative signs.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER

Appendix A

SECTION:

PAGE:

A sample of each operand type follows. To index an instruction in the assembly language,
prefix the operand with an asterisk., The assembler adds a 1 bit to the octal op-code of
single word instructions, or sets bit 12 of the second word of two-word instructions (op-

codes 5002 through 5010 and 5064).

LABEL

OPERATION 2

OPERAND

COMMENTS
50

10 30 40 60 70
TWe L CEQM e R IR TN T St O DU O O B A S S S U S Y WA T S W (U U B WA B SRR S I IR
WORK o IR0 L T O I T A OO Y A ST TS SN S TRt [S O B R R R S R ST BRI [o |
TEMP: 10 0 RES v VO il e g L T T SO T SO N N S N SR DO S SN
s e e R s g FIIKED, PRITNT, PART. | it el Ly o 1ot [N
AX s WOy e BIDXED, POINT, PART, | il s [g
EXPo v O EXPONENTL IO TSR S ST U IV UPI A H SRR A R O R R R A R
VlAlLJuEI [I W |RJE1$1 Lol Lo !,Z,LOJ L T A VU N W L S DR S W NS WA S | .L,i (ISND A AU BN R B | I LU U L S B S SO 1 t LU T B IS B A
L T T O T (U U S S S S YO Y U O T T SV S N S SO O T TS TN KO0 T U S ST K S S TP U S S
I O T O T S G GO SO0 OO O S SO N OO B S S AU S O WA S VOO Y SO S S A O B TR Y [R S R AU S G SO0 NV S0 H S B S S G RO |
ey LBK L O e B SPERAND L NI S U B A B W ST IS i
et vt o tbeb e, ETEMP L 1 S INDEXED Y OPERAND L v s bl e
e AR e TN e B BIPERAND, s b v b
Sl o 8 v WORKL L oY SIPERAND, PO S Y SU N U ST S T T A S T S SO R S B B SR S |
e e Skl oo b e 1o K SPERAND, s L et Lo o e |
e 188y Lt |$1+A2, bl Y GPERABNID, L T T R R NN B S
o T e M e Y @R ERAND O N S O YT U A B S O U SO SO WY U S B B S S VR R O
L T T T T N O T O SO RS T S T SO U O SOV N SO S W S N IO NS H S U0 Y WO SO A VO SOR S A SO Y S S B O B
L O T N O Y T Y 0 O T O Y ST U O T O ST O U N Y O O S S S WU B SO U T T A A WU T A A 00 A H S SO S
PO I S A T S | LA W . L l’,i, ,LFLGLRJ AEL&JC (H iglFl |T1HXEI iF JL! KLQL&XTLI JN_JQI lP,Iqu lNlTL LI J,,NJSAT IRJuic lTJIlallel [R
L i b e vy g g ey THE ASSEMBLER, GENERATES TwWE LINES OF, CODE . | et
T O O OO U .1 B S W S A SO S SO WY S SO S W N ST S RS S SO T W I H B TS O W ST O B B R A R SR |
DI S RS N N A T J t Lot i . llL EUi U WU N S S IFJIJXA,-I ‘,L,,A Lol 1 B SR S IS W oy W W l,,L TR S T Y R T | 1 [e A I
RS R AT BRI SR RRUNT S o SENTURSTURIRTEN - . AT S S Y SO O S SO S SO S USSR R S S U SR
BT SR U B . J LoxoLodl b B - lEfAEAA § S T S Y ,L,,L,]E xlpl doddos ,1;,,| i J.,L_,L,LJ;J_L,LJ,,J,,LH‘._A [V B l [ST RS E B T A I
s b BAC g PEVALME) 1 CYUNTENTS| OF, VALUE MUST, BE |
G A S O SO O U O T N U0 S T T O Y B RS ol e oo BN FLOAT FORMAT vt]
T 5 T Y NI T S T O TOI T UTU HOY CN U T YO G N G S S S0 W SO WAL A Y SO0 T A SO T BN T IO S SR
L T T T S T T A SV DO A0 B WO VIO D N A Y Y W U SO W N I S W SR B S SO SRR R

Library 3 3 1004
Univac Marketing Education Center
Div Sperry Rand Corp 52:56:58;61

Valley View Dunhill Bldg 4148-I/II7 R
251 West DeKalb Pike S R R
King of Prussia Pa 19406 ASSENBLER

UP-7599 REV. 1

UNIVAC 418-11l Real-Time System Library Memo 18 announces the release and availability of ““UNIVAC 418-lll Real-Time System RTOS
Assembler Programmers Reference,’” UP-7599 Rev. 1, covers and 171 pages. This is a Standard Library ltem (SLI).

This version of the UNIVAC 418-II1 Assembler manual describes the language and its uses in more detail than
the original. Included are descriptions of the coding format, expressions, directives, PROC's, and paraforms.

Certain directives have been removed and some new more powerful ones have been added. For example the UNLIST
directive has been added to the assembler, it provides a means of selectively preventing the printing of out-
put of sections of a program.

Dimensioned Labels, a new feature, are also described in detail. These are labels which are distinguished by
their subscripts rather than by the label itself.

Sample assembled printouts are included wherever possible to support explanations and show examples of the
features discussed. Coding examples are also given throughout the manual to assist in a logical presentation
and flow.

A detailed explanation of the instruction repertoire is included as well as an instruction repertoire summary.
Destruction Notice: UP-7599 Rev. 1 supersedes and replaces "UNIVAC 418-III Real-Time System Assembler Programmers

Reference," UP-7599, released on Library Memo 1 dated June 24, 1968. Please destroy all coples of UP-7599 and/ér
Library Memo 1.

Distribution of UP-7599 Rev. 1 has been made as indicated below. Additional copies may be requisitioned from
Holyoke, Massachusetts via a Sales Help Requisition through your local Univac Manager.

NOTE: Back Orders for this item are being filled
W/ automatically. Please do not réorder.
ROUP MAWAGER

Documentation and Library Services

B

&

E
i

FACHMENTS:

10U, 217, 630, 5 UP-7599 Rev. 1 plus Library Memo PERES SRER iy NTYAC 418-11T !
and 692 Library Memo 18 { 18 to S.P.L.S. Lists 57 and 58. i Real-Time System Library

only. ; © Memo 18.

July 23, 1970

F1ISION OF SPERRY RAND CORP1I®AaTION, S.P.L.S,, P.O. BOX 500. BLUE BELL, PA, 194272 Ur-duaU bev. 4 g

LNIVAC

UP.7599 Rev. 1

	0001
	0002
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	_1
	xBack

